شبیه سازی و آنالیز ترمودینامیکی سیکل ترکیبی توربین گازی مجهز به پیل سوختی اکسید جامد لوله ای و بررسی میزان برگشت ناپذیری سیستم ترکیبی

Tài liệu tương tự
1

LÝ LỊCH KHOA HỌC I. LÝ LỊCH SƠ LƢỢC Họ và tên: TRỊNH TRỌNG CHƢỞNG Ngày, tháng, năm sinh: 21/11/1976 Quê quán: Tp. Hải Dương, Hải Dương Giới tính: Nam

ĐÊ CƯƠNG CHI TIẾT HỌC PHẦN

HÓA - CHẾ BIẾN DẦU KHÍ ĐÁNH GIÁ HIỆU QUẢ SỬ DỤNG NHIỆT VÀ ĐỀ XUẤT GIẢI PHÁP TỐI ƯU NĂNG LƯỢNG TẠI HỆ THỐNG LÒ HƠI PHỤ TRỢ 10B8001 CỦA NHÀ MÁY ĐẠM PHÚ

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG LÝ LỊCH KHOA HỌC 1. THÔNG TIN CÁ NHÂN Họ và tên: Nguyễn Văn Tảo Ngày sinh: 05/1

ĐÊ CƯƠNG CHI TIẾT HỌC PHẦN

ỨNG DỤNG INTERNET OF THINGS XÂY DỰNG NGÔI NHÀ THÔNG MINH APPLICATION OF INTERNET OF THINGS TO SMARTHOME NGUYỄN VĂN THẮNG (1), PHẠM TRUNG MINH (1), NGU

ĐỀ CƯƠNG MÔN HỌC

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN LÝ LỊCH KHOA HỌC (Thông tin trong 5 năm gần nhất và có liên quan trực tiếp đến đề

NGHIÊN CỨU ẢNH HƢỞNG CỦA TỶ SỐ NÉN Ở ĐỘNG CƠ MỘT XYLANH KHI SỬ DỤNG NHIÊN LIỆU CNG HÌNH THÀNH HỖN HỢP BÊN NGOÀI A STUDY ON THE EFFECT OF COMPRESSION R

PowerPoint 프레젠테이션

I. QUÁ TRÌNH ĐÀO TẠO LÝ LỊCH KHOA HỌC Họ và tên: LÊ ANH TUẤN Ngày, tháng, năm sinh: 1978 Học hàm/ học vị cao nhất: PGS. TS Đơn vị công tác hiện tại: -

Chương 22: Động cơ nhiệt, entropy, và nguyên lý thứ hai của nhiệt động lực học Một động cơ Stirling vào đầu thế kỷ XIX được miêu tả như trên hình 22.1

JOURNAL OF SCIENCE OF HNUE DOI: / Educational Sci., 2015, Vol. 60, No. 8B, pp This paper is available online at ht

TRƯỜNG ĐẠI HỌC MỞ TP. HỒ CHÍ MINH

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA TOÁN-CƠ-TIN HỌC NGUYỄN THỊ QUỲNH VỀ PHỨC KOSZUL TÓM TẮT LUẬN VĂN THẠC SĨ Chuyên ngành: Đ

Microsoft Word - dh ktd 2012.doc

KCT dao tao Dai hoc nganh TN Hoa hoc_phan khung_final

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG *** PHẠM NGUYỄN MINH NHỰT CUNG CẤP TÀI NGUYÊN CHO DỊCH VỤ ẢO HÓA DỰA TRÊN NỀN TẢNG MÁY CHỦ CHIA SẺ TRONG TÍNH T

PHẦN III. NỘI DUNG CHƯƠNG TRÌNH ĐÀO TẠO 1. Tóm tắt yêu cầu chương trình đào tạo Tổng số tín chỉ của chương trình đào tạo: Khối kiến thức chung 158 tín

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN DỆT MAY-DA GIÀY VÀ THỜI TRANG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc CHƯƠNG TRÌNH ĐÀO TẠO

Phát triển sản phẩm mới - Chương 5 2/9/2015 CHUẨN ĐẦU RA CHƯƠNG Chương 5 ĐÁNH GIÁ KHÁI NIỆM SẢN PHẨM (PRODUCT CONCEPT EVALUATION) Hệ thống đánh giá kh

Microsoft Word - VoHoangLienMinh - Bao KH-CN- From UML to XML 1

Đề cương môn học

Microsoft Word - Bai bao_Pham Van Hung_Nguyen Cong Oanh.doc

Microsoft Word - 06-CN-TRAN HUU DANH(43-51)

Nghiên cứu phân hủy cao su phế thải bằng phương pháp hóa nhiệt xúc tác Phạm Hoàng Giang Trường Đại học Khoa học Tự nhiên Luận văn Thạc sĩ ngành: Khoa

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC MỞ TP. HỒ CHÍ MINH ĐỀ CƯƠNG MÔN HỌC 1. THÔNG TIN VỀ MÔN HỌC 1.1. Tên môn học: CÔNG NGHỆ PHẦN MỀM Mã MH: ITEC4409

Slide 1

CHƯƠNG TRÌNH ĐÀO TẠO CHUẨN TRÌNH ĐỘ ĐẠI HỌC NGÀNH: KẾ TOÁN PHẦN I: CHUẨN ĐẦU RA CỦA CHƯƠNG TRÌNH ĐÀO TẠO 1. Về kiến thức và năng lực chuyên môn 1.1. V

Microsoft Word - 11-KHMT-52NGUYEN VAN CUONG(88-93)

TOM TAT NHU HC.doc

THÔNG TIN TRƯỜNG HÈ TOÁN HỌC SINH VIÊN 2019 I. MỤC ĐÍCH: Mục đích của Trường hè là hỗ trợ các sinh viên giỏi toán phát huy được khả năng học tập và tậ

Cai tienThuat toan MCMF cho PP MTA

TrÝch yÕu luËn ¸n

Présentation PowerPoint

GS Hoàng Tụy Nhà Giáo dục ưu tú hàng đầu của Việt Nam, Nhà Toán Học lỗi lạc của thế giới. GS Hoàng Tụy - Hình: Internet GS. Hoàng Tụy là Viện Trưởng V

Microsoft Word 四技二專-化工群專二試題

KHOA H C CÔNG NGH NH H NG C A CÁC Y U T CÔNG NGH CHÍNH N KH N NG TRÍCH LY 1- DEOXYNOJIRIMYCIN (DNJ) T LÁ DÂU T M VI T NAM Hoàng Th L H ng 1, Nguy n Mi

Chương 21: Thuyết động học chất khí Mô hình phân tử của khí lý tưởng Mô hình khí lý tưởng Một số giả thiết đơn giản hóa tính chất của một hệ khí lý tư

CHÀO MỪNG NGÀY NHÀ GIÁO VIỆT NAM 20/11/2012 E b 1 4 ik ik y y x ( x x y ( ) 0 ) 0 ik 2 ( z d ) x, y, z G by e e e d K x dk 2 y ~ (2.7.a) Từ đó, có thể

MỘT SỐ NGHIÊN CỨU VỀ TÔNG AVENEAE (HỌ CỎ - POACEAE)

BÔ GIÁO DỤC VÀ ĐÀO TẠO CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG LÝ LỊCH KHOA HỌC 1. THÔNG TIN CÁ NHÂN Họ và tên: Nguyễn Thị Hằng Ngày sinh: 10/

Specification Eng-Viet-C10K.doc

GIẢI PHÁP NÂNG CAO NĂNG LỰC NGHIÊN CỨU KHOA HỌC CHO SINH VIÊN THEO MÔ HÌNH HỌC TẬP TỰ ĐỊNH HƯỚNG Trương Minh Trí 3, Bùi Văn Hồng 1, Võ Thị Xuân 2, 1 K

Content Nguyên lí và ứng dụng một số loại Sensor Nguyễn Thu Phương Trường Đại học Khoa học Tự nhiên Luận văn Thạc sĩ ngành: Vật lý vô tuyến và điện tử

CHÀO MỪNG NGÀY NHÀ GIÁO VIỆT NAM 20/11/2012 hiệu quả. Đầu tư phát triển đội tàu có cơ cấu hợp lý, hiện đại có năng lực cạnh tranh mạnh trên thị trường

CHƯƠNG 1 : MỞ ĐẦU

Tựa

1 Überschrift 1

Truy cập Website : hoc360.net Tải tài liệu học tập miễn phí Đề thi thử THPT QG THPT Chuyên Trần Phú - Hải Phòng - lần 2 Câu 1: Gọi λ1, λ2, λ3, λ4 tươn

Microsoft Word - TT lu?n án TS. Huy?n.doc

YÊU CẦU VỀ TẢI TRỌNG VÀ TÁC ĐỘNG KHI THIẾT KẾ NHÀ CAO TẦNG Ở VIỆT NAM TS. NGUYỄN ĐẠI MINH, KS. PHẠM ANH TUẤN Viện KHCN Xây dựng Tóm tắt: Bài báo này t

TẠP CHÍ KHOA HỌC, Đại học Huế, Tập 74B, Số 5, (2012), ĐÁNH GIÁ KHẢ NĂNG XỬ LÝ NƯỚC THẢI NUÔI TRỒNG THỦY SẢN NƯỚC LỢ CỦA BỂ LỌC SINH HỌC HIẾU K

Microsoft Word - tapchicon

ANTENNAS FABRICATION FOR RFID UHF AND MICROWAVE PASSIVE TAGS

4 Khoa hoïc Coâng ngheä THIẾT BỊ SẤY NÔNG SẢN BẰNG NĂNG LƯỢNG MẶT TRỜI TẠI VIỆT NAM Nguyễn Xuân Trung * Tóm tắt Đinh Vương Hùng ** Sấy nông sản bằng n

Tạp chí Khoa học công nghệ và Thực phẩm 12 (1) (2017) NGHIÊN CỨU MÔ PHỎNG QUÁ TRÌNH CẤP ĐÔNG CÁ TRA FILLET TRÊN BĂNG CHUYỀN IQF Đỗ Hữu Hoàng* Tr

Microsoft PowerPoint - Chapter 1_Introduction

Mô hình thực hành của người bác sĩ gia đình trong bối cảnh mới

Microsoft Word - DCOnThiVaoLop10_QD_Sua2009_

VIỆN KHOA HỌC

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG LÝ LỊCH KHOA HỌC 1. THÔNG TIN CÁ NHÂN Họ và tên: Vũ Vinh Quang Ngày sinh: 26/09

NGÂN HÀNG NHÀ NƯỚC VIỆT NAM HỌC VIỆN NGÂN HÀNG ******** CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập- Tự do- Hạnh phúc ******** CHƯƠNG TRÌNH GIÁO DỤC CỬ

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 HIỆU QUẢ KINH TẾ-KỸ THUẬT KHI SỬ DỤNG KHÁNG BÙ NGANG CÓ ĐIỀU KHIỂN TRÊN ĐƯỜNG DÂY TRUYỀ

Một số phân tích an toàn về đặc điểm thiết kế của chế độ EME2 Nguyễn Tuấn Anh Bài báo này phân tích về đặc điểm thiết kế của EME2. Các phân tích được

TRƯỜNG ĐẠI HỌC Y DƯỢC HUẾ KHOA DƯỢC HƯỚNG DẪN TÌM KIẾM TÀI LIỆU THAM KHẢO Trần Thế Huân

CHÍNH SÁCH TÀI KHÓA 2013 VÀ NHỮNG THÁCH THỨC TRONG NGẮN HẠN VÀ TRUNG HẠN TS. Vũ Sỹ Cường 88 Dẫn nhập Sau khi lạm phát tăng mạnh vào năm 2011 thì năm 2

NGÂN HÀNG NHÀ NƯỚC VIỆT NAM HỌC VIỆN NGÂN HÀNG ******** CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập- Tự do- Hạnh phúc ******** CHƯƠNG TRÌNH GIÁO DỤC CỬ

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Informat

PowerPoint Presentation

THùC TR¹NG TI£U THô RAU AN TOµN T¹I MéT Sè C¥ Së

Phân tích Thiết kế Hướng đối tượng - OOAD

Mẫu số 03 TÓM TẮT LÝ LỊCH KHOA HỌC ỨNG VIÊN THAM GIA HỘI ĐỒNG GIÁO SƯ 1. Họ và tên: NGUYỄN HOÀNG LỘC 2. Năm sinh: Chức vụ và cơ quan công tác

Vũ Hoài Nam-Mạng và Hệ thống điện

Bản ghi:

ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ - ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ ﺷﻤﺎﺭﻩ ﺩﻭﻡ / ﺳﺎﻝ ﺩﻭﻡ / ﺗﺎﺑﺴﺘﺎﻥ / 1391 ﺻﻔﺤﻪ 51-40 ﻫﺎﻣﻮﻥ ﭘﻮﺭﻣﻴﺮﺯﺍﺁﻗﺎ* 1 ﺩﺍﻧﺸﺠﻮﻱ ﺩﻛﺘﺮﻱ ﺭﺿﺎ ﺍﺑﺮﺍﻫﻴﻤﻲ 2 ﺩﺍﻧﺸﻴﺎﺭ ﮔﺮﻭﻩ ﻣﻬﻨﺪﺳﻲ ﻣﻜﺎﻧﻴﻚ ﻭ ﻫﻮﺍﻓﻀﺎـ ﺩﺍﻧﺸﮕﺎﻩ ﺁﺯﺍﺩ ﺍﺳﻼﻣﻲ ـ ﻭﺍﺣﺪ ﺭﺍﻣﺴﺮـ ﺭﺍﻣﺴﺮـ ﺍﻳﺮﺍﻥ hamoon_pourmirzaagha@yahoo.com ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﻫﻮﺍﻓﻀﺎـ ﺩﺍﻧﺸﮕﺎﻩ ﺻﻨﻌﺘﻲ ﺧﻮﺍﺟﻪ ﻧﺼﻴﺮﺍﻟﺪﻳﻦ ﻃﻮﺳﻲ ـ ﺗﻬﺮﺍﻥ ـ ﺍﻳﺮﺍﻥ REbrahimi@kntu.ac.ir ﺍﺭﺳﺎﻝ ﻣﻘﺎﻟﻪ 90/6/20 : ﺍﺻﻼﺣﻴﻪ 90/7/2 : ﭘﺬﻳﺮﺵ ﻣﻘﺎﻟﻪ 91/3/1 : ﭼﻜﻴﺪﻩ : ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺑﺮﺭﺳﻲ ﻋﻤﻠﻜﺮﺩ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯ ﻣﺠﻬﺰ ﺑﻪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻟﻮﻟﻪﺍﻱ ﺑﺎ ﺳـﻮﺧﺖ ﻫﻴـﺪﺭﻭژﻥ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ. ﻛﻠﻴﺔ ﺍﺟﺰﺍﻱ ﺳﻴﺴﺘﻢ ﺟﺪﺍﮔﺎﻧﻪ ﺑﻪ ﻛﻤﻚ ﺭﻭﺍﺑﻂ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﻣﺪﻝﺳﺎﺯﻱ ﺷﺪﻩ ﺍﺳﺖ. ﺁﺛﺎﺭ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻣﺨﺘﻠﻒ ﺑﺮ ﺭﺍﻧﺪﻣﺎﻥ ﺳـﻴﻜﻞ ﻭ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻣﻮﺭﺩ ﻣﻄﺎﻟﻌﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ. ﺑﺮﺍﻱ ﺻﺤﺖ ﻛﺎﺭ ﻧﺘﺎﻳﺞ ﺣﺎﺿﺮ ﺑﺎ ﻧﺘﺎﻳﺞ ﻣﺮﺍﺟﻊ ﻣﻌﺘﺒﺮ ﻣﻘﺎﻳﺴﻪ ﺷﺪﻩ ﻭ ﻣﻄﺎﺑﻘـﺖ ﺧـﻮﺑﻲ ﻣﺸﺎﻫﺪﻩ ﺷﺪﻩ ﺍﺳﺖ. ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎﺯﻱ ﻧﺸﺎﻥ ﺩﺍﺩ ﻛﻪ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ ﺍﻳﻦ ﺩﺭ ﺣـﺎﻟﻲ ﺍﺳـﺖ ﻛـﻪ ﺗﻮﺍﻥ ﺳﻴﺴﺘﻢ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ. ﻫﻤﭽﻨﻴﻦ ﺍﻓﺰﺍﻳﺶ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﻭ ﺍﻓﺰﺍﻳﺶ ﻧﺴﺒﺖ ﻓﺸﺎﺭ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺁﻧﺘﺮﻭﭘـﻲ ﺗﻮﻟﻴـﺪﻱ ﻭ ﺩﺭ ﻧﺘﻴﺠـﻪ ﺍﻓـﺰﺍﻳﺶ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺳﻴﺴﺘﻢ ﻣﻲﺷﻮﺩ. ﻧﺘﺎﻳﺞ ﺗﺤﻘﻴﻖ ﺩﺭ ﻧﻘﻄﺔ ﻃﺮﺍﺣﻲ ﻧﺸﺎﻥ ﺩﺍﺩ ﻛﻪ % 60 ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺳﻴﺴﺘﻢ ﻧﺎﺷﻲ ﺍﺯ ﻣﺤﻔﻈﻪ ﺍﺣﺘـﺮﺍﻕ ﻭ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ) %32 ﻣﻴﺰﺍﻥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺳﻬﻢ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻭ %28 ﺳﻬﻢ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ( ﻭ %17 ﻧﻴﺰ ﺳﻬﻢ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﺍﺳـﺖ. ﻫﻤﭽﻨـﻴﻦ ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺩﺍﺭﺍﻱ ﺭﺍﻧﺪﻣﺎﻥ % 56/9 ﻣﻲﺑﺎﺷﺪ ﺩﺭ ﺣﺎﻟﻲ ﻛﻪ ﺳﻴﺴﺘﻢ ﺑﺪﻭﻥ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺩﺍﺭﺍﻱ ﺭﺍﻧﺪﻣﺎﻥ % 31/4 ﺍﺳﺖ ﻛﻪ ﻧﺸﺎﻥ ﺍﺯ ﻋﻤﻠﻜﺮﺩ ﻓـﻮﻕﺍﻟﻌـﺎﺩﺓ ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺩﺍﺭﺩ. ﻭﺍژﻩﻫﺎﻱ ﻛﻠﻴﺪﻱ : ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺭﺍﻧﺪﻣﺎﻥ. ﺷﺒﻴﻪﺳﺎﺯﻱ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻟﻮﻟﻪﺍﻱ ﻭ ﺑﺮﺭﺳﻲ ﻣﻴﺰﺍﻥ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ

ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ 41 /... ].[5 ﻫﻤﭽﻨﻴﻦ ﻛﺎﺭﻫﺎﻱ ﻣﺘﻌـﺪﺩ ﺩﻳﮕـﺮﻱ ﺩﺭ ﺍﻳـﻦ ﺯﻣﻴﻨـﻪ ﺗﻮﺳـﻂ ﻣﺤﻘﻘـﺎﻥ.1 ﻣﻘﺪﻣﻪ ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻳﻜﻲ ﺍﺯ ﭘﺮ ﺑﺎﺯﺩﻩﺗﺮﻳﻦ ﻣﻨـﺎﺑﻊ ﺗﻮﻟﻴـﺪ ﺍﻧﺮژﻱ ﺑﻮﺩﻩ ﺍﺳﺖ. ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻳﻚ ﺩﺳﺘﮕﺎﻩ ﺍﻟﻜﺘﺮﻭﺷـﻴﻤﻴﺎﻳﻲ ﺍﺳـﺖ ﻛـﻪ ﻣﺨﺘﻠـﻒ ﻣﺎﻧﻨـﺪ ﭼــﺎﻥ ﻭ ﻫﻤﻜـﺎﺭﺍﻥ ] 6 ﻭ [7 ﺍﻧﺠـﺎﻡ ﺷـﺪﻩ ﺍﺳـﺖ. ﻳﺎﻧـﮓ ﻭ ﻫﻤﻜﺎﺭﺍﻥ ] [8 ﺩﻭ ﺳﻴﺴﺘﻢ ﺑـﺎ ﺑﻬﺴـﺎﺯﻱ ﺳـﻮﺧﺖ ﺑـﻪ ﺻـﻮﺭﺕ ﺩﺍﺧﻠـﻲ ﻭ ﺧﺎﺭﺟﻲ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻨﺪ ﻭ ﺗﺄﺛﻴﺮ ﻣﺤﺪﻭﺩﻳﺖ ﺩﺭ ﺍﺧﺘﻼﻑ ﺩﻣﺎﻱ ﺍﺳﺘﻚ ﭘﻴﻞ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻧﺴﺒﺘﺎ ﺁﺭﺍﻡ ﻭ ﺑﻲﺻﺪﺍﺳﺖ ﺑﻪ ﻫﻤﻴﻦ ﺩﻟﻴﻞ ﺟﻬﺖ ﺗﻮﻟﻴﺪ ﺑـﺮﻕ ﻣﺸـﺨﺼﺎﺕ ﻃـﺮﺍﺣـﻲ ﻭ ﻋﻤﻠﻜــﺮﺩ ﻳـﻚ ﺳـﻴـﺴــﺘﻢ ﺗﺮﻛﻴﺒـﻲ ﺭﺍ ﺑـﺎ ﺩﺭ ﻣﺤﻠﻲ ﻣﻨﺎﺳﺐ ﻣﻲﺑﺎﺷـﺪ ].[1 ﻫﻤﭽﻨـﻴﻦ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺑـﻪ ﻋﻨـﻮﺍﻥ ﻳـﻚ ﻧـ ﻈﺮ ﮔـﺮﻓﺘﻦ ﻳـﻚ ﺗـﻮﺭﺑﻴﻦ ﮔـﺎﺯ ﻣﺸـﺨﺺ ﺑﺮﺭﺳـﻲ ﻛﺮﺩﻧـﺪ. ﺩﺭ ﺑﻴﺸـﺘﺮ ﻓﻦﺁﻭﺭﻱ ﻧﻮﻳﻦ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺗﻮﺍﻥ ﺩﺭ ﺗﻮﺭﺑﻴﻦﻫﺎﻱﮔﺎﺯﻱ ﺑـﻪ ﻛـﺎﺭ ﮔﺮﻓﺘـﻪ ﻭ ﺗـﺤـﻘـﻴـﻘﺎﺕ ﻣـﺬﻛﻮﺭ ﻋﻤﻠﻜـــﺮﺩ ﺳﻴﺴـﺘﻢ ﺗـــﺮﻛﻴﺒﻲ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﻭ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺑﺎﺯﺩﻩ ﺗﺎ %60 ﻣﻲﺷﻮﺩ ﺩﺭ ﺣﺎﻟﻲ ﻛﻪ ﺩﺭ ﺗﻮﺭﺑﻴﻦﻫﺎﻱ ﮔﺎﺯﻱ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻗـﺎﻧﻮﻥ ﺍﻭﻝ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴـﻚ ﺑﺮﺭﺳـﻲ ﺷـﺪﻩ ﺍﺳـﺖ. ﻣﻌﻤﻮﻟﻲ ﺑﻪ ﻋﻠﺖ ﺗﻠﻔﺎﺕ ﺯﻳﺎﺩ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺑﺎﺯﺩﻩ ﺩﺭ ﺣـﺪﻭﺩ %30 ﻫﻤﭽﻨﻴﻦ ﻛـﺎﺭ ﻫـﺎﻱ ﮔﻮﻧـﺎﮔﻮﻥ ﺩﻳﮕـﺮﻱ ﺑـﺎ ﺩﺭ ﻧﻈـﺮ ﮔـﺮﻓﺘﻦ ﻗـﺎﻧﻮﻥ ﺩﻭﻡ ﺗﺎ %35 ﺍﺳﺖ. ﺍﺯ ﻣﻴﺎﻥ ﺍﻧﻮﺍﻉ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻧـﻮﻉ ﺍﻛﺴـﻴﺪ ﺟﺎﻣـﺪ ﺑـﻪ ﺩﻟﻴـﻞ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮ ﺭﻭﻱ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﻛﻪ ﺑﻪ ﺑﺮﺭﺳـﻲ ﻗـﺎﻧﻮﻥ ﺩﻭﻡ ﺭﺍﻧﺪﻣﺎﻥ ﺑﺎﻻ ﺁﻟﻮﺩﮔﻲ ﻛﻢ ﺗﻨﻮﻉ ﺳﻮﺧﺖ ﻣﺼﺮﻓﻲ ﻭ ﺍﺯ ﻫﻤﻪ ﻣﻬﻢﺗﺮ ﺩﻣـﺎﻱ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮ ﺭﻭﻱ ﺳﻴﺴﺘﻢ ﻭ ﻫﺮ ﻳﻚ ﺍﺯ ﺍﺟﺰﺍﻱ ﺁﻥ ﻣﻲﭘﺮﺩﺍﺯﺩ ﻭ ﻧـﺮﺥ ﺑﺎﻻﻱ ﮔﺎﺯ ﺧﺮﻭﺟﻲ ﺑﻬﺘﺮﻳﻦ ﮔﺰﻳﻨﻪ ﺑﺮﺍﻱ ﺍﺳـﺘﻔﺎﺩﻩ ﺩﺭ ﺗـﻮﺭﺑﻴﻦﮔـﺎﺯﻱ ﺑـﻪ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺭﺍ ﺩﺭ ﺍﺟﺰﺍﻱ ﺳﻴﺴﺘﻢ ﺑﺮﺭﺳﻲ ﻣﻲﻛﻨﺪ. ﺩﺍﻧﺴﺘﻦ ﺳﻬﻢ ﻫـﺮ ﺷﻤﺎﺭ ﻣﻲﺭﻭﺩ. ﺑﻪ ﻫﻤﻴﻦ ﺩﻟﻴﻞ ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ ﺍﻳـﻦ ﺗﻜﻨﻮﻟـﻮژﻱ ﺑﺴـﻴﺎﺭ ﻳﻚ ﺍﺯ ﺍﺟﺰﺍ ﺍﺯ ﻧﺮﺥ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﻛﻞ ﺳﻴﺴﺘﻢ ﻣﻲﺗﻮﺍﻧﺪ ﻣﻨﺸﺄ ﺑﻬﺒﻮﺩ ﻭ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ] 2 ﻭ.[3 ﺍﺻﻼﺡ ﺩﺭ ﺍﺟﺰﺍ ﻭ ﻓﺮﺁﻳﻨﺪ ﺳﻴﺴﺘﻢ ﺷﻮﺩ. ﻫﺴﻠﻲ ﻭ ﻫﻤﻜـﺎﺭﺍﻥ ] 10 ﻭ [11 ﺩﺭ ﮔﺮﭼﻪ ﺗﺤﻘﻴﻘﺎﺕ ﺩﺭ ﺯﻣﻴﻨﺔ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺍﺯ ﺍﻭﺍﺧـﺮ ﺩﻫـﺔ ﺩﻭ ﻣﻄﺎﻟﻌﺔ ﺟﺪﺍﮔﺎﻧﻪ ﺑﻪ ﺑﺮﺭﺳﻲ ﺗﺨﺮﻳﺐ ﺍﮔﺰﺭژﻱ ﻭ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴـﺪﻱ ﺩﺭ 50 ﻣﻴﻼﺩﻱ ﺁﻏﺎﺯ ﮔﺮﺩﻳﺪ ﻭﻟﻲ ﻧﺘﺎﻳﺞ ﻳﻚ ﻣﺪﻝ ﺳﺎﺩﺓ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﻳﻚ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﭘﺮﺩﺍﺧﺘﻨﺪ. ﺁﻧﺎﻥ ﻧﺸﺎﻥ ﺩﺍﺩﻧﺪ ﻛﻪ ﺑﺎ ﺍﺿـﺎﻓﻪ ﺷـﺪﻥ ﭘﻴـﻞ ﺟﺎﻣﺪ ﺩﺭ ﺍﻭﺍﺳﻂ ﺩﻫﺔ 80 ﻣﻨﺘﺸﺮ ﺷﺪ ﻟﺬﺍ ﺍﻭﻟﻴﻦ ﻣﻘﺎﻻﺕ ﺩﺭ ﺯﻣﻴﻨﺔ ﺳﻴﺴﺘﻢ ﺳﻮﺧﺘﻲ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎﺯﺩﻩ ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺑﻪ ﻣﻴﺰﺍﻥ 27/8 ﺩﺭﺻﺪ ﺍﻓـﺰﺍﻳﺶ ﻫﺎﻱ ﺗﺮﻛﻴﺒﻲ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺑﻪ ﺍﻭﺍﻳﻞ ﺩﻫـﺔ 90 ﺑﺮﻣـﻲ ﮔـﺮﺩﺩ. ﻣﻲﻳﺎﺑﺪ. ﻣﻔﻬﻮﻡ ﺑﻪ ﻛﺎﺭﮔﻴﺮﻱ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺩﺭ ﻛﻨﺎﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺳـﺎﻝ ﻫﺎﺳـﺖ ﻛـﻪ ﺩﺭ ﻣﻘﺎﻟﺔ ﺣﺎﺿﺮ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻛﻪ ﺩﺭ ﺷﻜﻞ ) (1 ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷـﺪﻩ ﺷــﻨﺎﺧﺘﻪ ﺷــﺪﻩ ﻭ ﺗــﺎﻛﻨﻮﻥ ﺗﺤﻘﻴﻘــﺎﺕ ﺯﻳــﺎﺩﻱ ﺑــﺎ ﺍﺳــﺘﻔﺎﺩﻩ ﺍﺯ ﻗــﺎﻧﻮﻥ ﺍﻭﻝ ﻣﻮﺭﺩ ﺗﺤﻠﻴﻞ ﻭ ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ].[10 ﺩﺭ ﺍﻳﻦ ﺗﺤﻘﻴﻖ ﻣﺪﻝ ﭘﻴـﻞ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮ ﺭﻭﻱ ﺁﻥ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺍﺳﺖ. ﺩﺭ ﺳـﺎﻝ 2000 ﻣﺎﺳـﺎﺭﺍﺩﻭ ﻭ ﺳﻮﺧﺘﻲ ﺑﻪ ﺻﻮﺭﺕ ﻛﺎﻣﻞ ﺑﺎ ﺭﻭﺍﺑﻂ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﻣﺪﻝﺳﺎﺯﻱ ﺷﺪﻩ ﺍﺳﺖ. ﻟﻮﺑﻠﻲﻳﻚ ﻣﻄﺎﻟﻌﺔ ﻣﻔﻬﻮﻣﻲ ﺩﺭﺑﺎﺭﺓ ﺑﺮﺭﺳﻲ ﻋﻤﻠﻜﺮﺩ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒـﻲ ﺍﻧﺠـﺎﻡ ﺩﺍﺩﻧﺪ ].[4 ﻣﺪﻝ ﺭﻳﺎﺿﻲ ﺍﺭﺍﺋﻪ ﺷـﺪﻩ ﺗﻮﺳـﻂ ﺁﻥﻫـﺎ ﻋﻤﻠﻜـﺮﺩ ﭘﻴـﻞ ﺭﺍ ﺩﺭ ﺣﺎﻟﺖ ﻳﻜﻨﻮﺍﺧﺖ ﻭ ﭘﺎﻳﺪﺍﺭ ﺷﺒﻴﻪﺳﺎﺯﻱ ﻣـﻲﻛـﺮﺩ. ﻛﺎﺳـﺘﺎﻣﮕﻨﺎ ﻭ ﻫﻤﻜـﺎﺭﺍﻥ ﻃﺮﺍﺣﻲ ﻭ ﻋﻤﻠﻜﺮﺩ ﺳﻴﺴﺘﻤﻲ ﻣﺘﺸﻜﻞ ﺍﺯ ﻣﻴﻜﺮﻭﺗـﻮﺭﺑﻴﻦ ﮔـﺎﺯ ﺑـﺎ ﺑﺎﺯﻳـﺎﺏ ﺣﺮﺍﺭﺗﻲ ﻭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺩﻣﺎ ﺑﺎﻻ ﺭﺍ ﻣﻮﺭﺩ ﺁﺯﻣﺎﻳﺶ ﻗﺮﺍﺭ ﺩﺍﺩﻧﺪ ﺳــﻮﺧﺖ ﻣﺼــﺮﻓﻲ ﭘﻴــﻞ ﺳــﻮﺧﺘﻲ ﻫﻴــﺪﺭﻭژﻥ ﻣــﻲﺑﺎﺷــﺪ. ﺍﺑﺘــﺪﺍ ﺭﻭﺍﺑــﻂ ﺍﻟﻜﺘﺮﻭﺷﻴﻤﻴﺎﻳﻲ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑﻪ ﻛﻤﻚ ﺭﻭﺍﺑﻂ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﻣﺪﻝ ﺷﺪﻩ ﻭ ﺳﭙﺲ ﺑﺎ ﺳﻴﺴﺘﻢ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﻛﻮﭘﻞ ﮔﺮﺩﻳﺪﻩ ﺍﺳـﺖ. ﺍﻳـﻦ ﻣـﺪﻝﺳـﺎﺯﻱ ﺩﺭ ﻧﺮﻡﺍﻓﺰﺍﺭ ﻣﺘﻠﺐ ﺑﻪ ﺻﻮﺭﺕ ﻛﺪ ﻧﻮﺷﺘﻪ ﺷﺪﻩ ﺍﺳﺖ. ﺳﻮﺧﺘﻲ ] [1100 ﻞ ﺳﻮﺧﺘ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎ ﻴﭘﻴﻴﻞ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒ ﻧﻤﺎﻳﻲ ﺍﺯ ﺳﻴﺴﺘﺘﻢ ﺷﻜﻞ ) :(1 ﻧﻤﺎﻳ ﻃﻲ ﻭﺍﻛﻨﺶ ﺑﻴﻦ ﻫﻴﺪﺭﻭژﻥ ﻭ ﺍﻛﺴﻴﮋﻥ ﺍﻟﻜﺘﺮﻳﺴﻴﺘﻪ ﻭ ﮔﺮﻣﺎ ﺗﻮﻟﻴﺪ ﻣﻲﻛﻨـﺪ. ﺳﻮﺧﺘﻲ ﺭﺍ ﺑﺮ ﻋﻤﻠﻜﺮﺩ ﺁﻥﻫـﺎ ﺑﺮﺭﺳـﻲ ﻛﺮﺩﻧـﺪ. ﭘـﺎﺭﻙ ﻭ ﻫﻤﻜـﺎﺭﺍﻥ ] [9

/ 42 ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ - ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ ﺳﻴﺴــﺘﻢ ﻣــﻮﺭﺩ ﻣﻄﺎﻟﻌــﻪ ﺷــﺎﻣﻞ 6 ﺟــﺰء ﺍﺳــﺖ : ﻛﻤﭙﺮﺳــﻮﺭ ﻣﺒــﺪﻝ ) (1 ﺣﺮﺍﺭﺗﻲ)ﺑﺎﺯﻳﺎﺏ( ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﻣﺤﻔﻈـﺔ ﺍﺣﺘـﺮﺍﻕ ﺗـﻮﺭﺑﻴﻦ ﻭ ﺗـﻮﺭﺑﻴﻦ m 2 h2 ﺗﻮﺍﻥ ﻣﺼﺮﻓﻲ ﻛﻤﭙﺮﺳﻮﺭ ﻛﻪ ﺍﺯ ﻃﺮﻳﻖ ﺗـﻮﺭﺑﻴﻦ ﺗـﺄﻣﻴﻦ ﻣـﻲﺷـﻮﺩ ﺑـﻪ ﻗﺪﺭﺕ. ﺩﺭ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻫﻮﺍ ﺩﺭ ﻧﻘﻄﺔ 1 ﻭﺍﺭﺩ ﻛﻤﭙﺮﺳﻮﺭ ﻣـﻲﺷـﻮﺩ ﻭ ﺑـﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ : ﺣﺎﻟﺖ ﻓﺸﺮﺩﻩ ﺍﺯ ﻧﻘﻄﺔ 2 ﺧﺎﺭﺝ ﻣﻲﮔﺮﺩﺩ. ﻫﻮﺍﻱ ﻓﺸﺮﺩﻩ ﺷﺪﻩ ﻭﺍﺭﺩ ﻣﺒـﺪﻝ ) (2 ﺭﺍﻧﺪﻣﺎﻥ ﺁﻳﺰﻧﺘﺮﻭﭘﻴﻚ ﻛﻤﭙﺮﺳﻮﺭ ﻧﻴﺰ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ : ﻫﻮﺍﻱ ﻓﺸﺮﺩﻩ ﺗﺎ ﻧﻘﻄﺔ 3 ﺑﺎﻻ ﻣﻲﺭﻭﺩ. ﻫﻮﺍﻱ ﮔﺮﻡ ﺷﺪﻩ ﺩﺭ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗـﻲ ﺁﻧﺪ ﺑﻪ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﻲﺭﻭﺩ ﻭ ﺑﻪ ﻫﻤﺮﺍﻩ ﻣﻘﺪﺍﺭ ﺳﻮﺧﺘﻲ ﺩﻳﮕـﺮ ﻛـﻪ ﺑـﻪ h2s h1 h2 h1 ) (3 ﻣﻲﺷﻮﺩ. ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﺳﻮﺧﺖ ﻭﺍﺭﺩ ﺁﻧﺪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻣﻲﺷﻮﺩ. ﭘﺲ ﺍﺯ ﺍﻧﺠﺎﻡ ﻭﺍﻛﻨﺶ ﺍﻟﻜﺘﺮﻭﺷﻴﻤﻴﺎﻳﻲ ﺩﺭﻭﻥ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻭ ﺗﻮﻟﻴﺪ ﺗﻮﺍﻥ ﺧﺮﻭﺟﻲ m1 h2 h1 wc w cs w ca Kc ﺑﺮﺍﻱ ﺗﺤﻠﻴﻞ ﻗﺎﻧﻮﻥ ﺩﻭﻡ ﺳﻴﺴﺘﻢ ﺑﺎ ﻣﺸﺨﺺ ﺑﻮﺩﻥ ﺷﺮﺍﻳﻂ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﻃﻲ ﻓﺮﺁﻳﻨﺪ ﺗـﺮﺍﻛﻢ ﺑـﻪ ﺻـﻮﺭﺕ ﺯﻳـﺮ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻭﺍﺭﺩ ﺷﺪﻩ ﻭﺍﻛﻨﺶ ﻣﻲﺩﻫﺪ ﻭ ﻣﺤﺼﻮﻻﺕ ﺑـﺎ ﺩﻣـﺎﻱ ﺑـﺎﻻ ﻣﺤﺎﺳﺒﻪ ﻣﻲﺷﻮﺩ : ﺗﻮﻟﻴﺪ ﻣﻲﻛﻨﺪ. ﺧﺮﻭﺟﻲ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺩﺭ ﻧﻘﻄﺔ 5 ﻭﺍﺭﺩ ﺗﻮﺭﺑﻴﻦ ﻣﻲﺷـﻮﺩ ) (4 ) m1 (s 2 s1 s gen,c ﻭ ﭘﺲ ﺍﺯ ﺑﻪ ﮔﺮﺩﺵ ﺩﺭﺁﻭﺭﺩﻥ ﻛﻤﭙﺮﺳﻮﺭ ﺩﺭ ﻧﻘﻄﺔ 6 ﻭﺍﺭﺩ ﺗﻮﺭﺑﻴﻦ ﻗﺪﺭﺕ ﻣﻲﮔﺮﺩﺩ ﻭ ﺗﻮﻟﻴﺪ ﺗﻮﺍﻥ ﻣﻲﻛﻨﺪ ﺳﭙﺲ ﺩﺭ ﻧﻘﻄﺔ 7 ﻭﺍﺭﺩ ﺑﺎﺯﻳﺎﺏ ﻣﻲﺷﻮﺩ ﻭ.2.2 ﻣﺪﻝﺳﺎﺯﻱ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﭘﺲ ﺍﺯ ﮔﺮﻡ ﻛﺮﺩﻥ ﻫﻮﺍﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺩﺭ ﻧﻘﻄﺔ 8 ﻭﺍﺭﺩ ﻣﺤﻴﻂ ﻣﻲﺷﻮﺩ..2 ﻣﺪﻝﺳﺎﺯﻱ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﺑﻪ ﻃﻮﺭ ﮔﺴﺘﺮﺩﻩ ﺩﺭ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﺻﻨﻌﺘﻲ ﻣﻮﺭﺩ ﺍﺳـﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﻧﺪ ﻭ ﻃﺮﺍﺣﻲ ﺑﺴﻴﺎﺭ ﻣﺘﻨﻮﻋﻲ ﺩﺍﺭﻧﺪ. ﻧﻘﻄﺔ ﻣﺸﺘﺮﻙ ﻫﻤـﺔ ﺁﻥﻫـﺎ ﺍﻳﻦ ﺍﺳﺖ ﻛﻪ ﻋﻤﻠﻜﺮﺩ ﻫﺮ ﻛﺪﺍﻡ ﺑﻪ ﺳﻄﺢ ﺍﻧﺘﻘﺎﻝ ﺣﺮﺍﺭﺕ ﺧﻮﺍﺹ ﺳﻴﺎﻝ ﻭ ﺷﻜﻞ ﺟﺮﻳﺎﻥ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ. ﺭﺍﻧﺪﻣﺎﻥ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷﺖ ] :[12 ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﻣﻌﺎﺩﻻﺕ ﺣﺎﻛﻢ ﺑﺮ ﺍﺟﺰﺍﻱ ﺳـﻴﻜﻞ ﺗﺮﻛﻴﺒـﻲ ﺗـﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺟﻬﺖ ﻣﺪﻝﺳﺎﺯﻱ ﺗﺮﻣﻮﺩﻳﻨـﺎﻣﻴﻜﻲ ﺁﻭﺭﺩﻩ ) (5 ﺷﺪﻩ ﺍﺳﺖ. ﺑﺮﺍﻱ ﻣﺪﻝﺳﺎﺯﻱ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﻓﺮﺿـﻴﻪﻫـﺎﻱ ﺯﻳـﺮ ﺩﺭ ﻧــﻈﺮ ﮔﺮﻓﺘـﻪ ﻣﻲﺷﻮﻧﺪ.1 : ﻛﻠﻴﺔ ﺍﺟﺰﺍﻱ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺁﺩﻳﺎﺑﺎﺗﻴﻚ ﻓﺮﺽ ﻣﻲﺷـﻮﻧﺪ.2 ﺟﺮﻳﺎﻥ ﺳﻴﺎﻝ ﺩﺭ ﺗﻤﺎﻡ ﺍﺟـﺰﺍ ﭘﺎﻳـﺪﺍﺭ ﺍﺳـﺖ.3 ﺗﻐﻴﻴـﺮﺍﺕ ﺍﻧـﺮژﻱﻫـﺎﻱ ﭘﺘﺎﻧﺴﻴﻞ ﻭ ﺟﻨﺒﺸﻲ ﺻﻔﺮ ﻓﺮﺽ ﻣﻲﺷﻮﺩ.4 ﺭﻓﺘﺎﺭ ﺗﻤﺎﻡ ﮔﺎﺯﻫﺎ ﺑﻪ ﺻـﻮﺭﺕ.1.2 ﻣﺪﻝﺳﺎﺯﻱ ﻛﻤﭙﺮﺳﻮﺭ ﻫﻮﺍﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﻛﻤﭙﺮﺳﻮﺭ ﻫﻮﺍﻱ ﻣﺤﻴﻂ ﻣﻲﺑﺎﺷـﺪ. ﺗﺮﻛﻴـﺐ ﻣـﻮﻟﻲ H recup ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮﺍﻱ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷـﺘﻪ ﻣﻲﺷﻮﺩ : ) (6 ) m 7 (h7 h8 m 2 h3 h2 ﺍﺯ ﺭﺍﺑﻄﺔ ﺑﺎﻻ ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﺔ ﺩﻣﺎﻱ ﮔﺎﺯﻫﺎﻱ ﮔـﺮﻡ ﺧﺮﻭﺟـﻲ ﺍﺯ ﺳـﻴﻜﻞ ﮔﺎﺯ ﺍﻳﺪﻩﺁﻝ ﺍﺳﺖ.5 ﺍﺯ ﺁﺛﺎﺭ ﻣﺮﺑﻮﻁ ﺑـﻪ ﺧﻨـﻚﻛـﺎﺭﻱ ﺗـﻮﺭﺑﻴﻦ ﺻـﺮﻓﻨﻈﺮ ﻣﻲﺷﻮﺩ. T 3 T 2 T 7 T 2 ﻣﻲﺗﻮﺍﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩ. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺑﻘﺎﻱ ﺟﺮﻡ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﻣﺒـﺪﻝ ﺣﺮﺍﺭﺗـﻲ ﺑـﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ : ) (7 ) m 2 (s 3 s 2 ) m 7 (s 7 s 8 s gen, recup ﻫﻮﺍ ﺑﻪ ﺻﻮﺭﺕ 0/21 ﻣﻮﻝ ﺍﻛﺴﻴﮋﻥ ﻭ 0/79 ﻣﻮﻝ ﻧﻴﺘﺮﻭژﻥ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘـﻪ ﺷﺪﻩ ﺍﺳﺖ. ﺩﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﺮﻛﻴﺒﻲ ﻫﻮﺍﻱ ﻓﺸﺮﺩﻩ ﺷﺪﻩ ﺗﻮﺳﻂ ﻛﻤﭙﺮﺳـﻮﺭ.3.2 ﻣﺪﻝﺳﺎﺯﻱ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﭘﺲ ﺍﺯ ﮔﺮﻡ ﺷﺪﻥ ﺗﻮﺳﻂ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﻭﺍﺭﺩ ﻛﺎﺗﺪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻣﻲﺷﻮﺩ. ﻣﺪﻝ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻣﻮﺭﺩ ﻣﻄﺎﻟﻌﻪ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺮ ﺍﺳﺎﺱ ﻛﻤﭙﺮﺳﻮﺭ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﺣﺠﻢ ﻛﻨﺘﺮﻝ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺪﻝ ﺗﻮﺳﻌﻪﻳﺎﻓﺘﺔ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﺟﺎﻣـﺪ ﻟﻮﻟـﻪ ﺩﺭ ] [13 ﻣـﻲﺑﺎﺷـﺪ. ﺭﺍﺑﻄﺔ ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺑﺮﺍﻱ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ : ﻭﺍﻛﻨﺶﻫﺎﻱ ﺍﻟﻜﺘﺮﻭﺷﻴﻤﻴﺎﻳﻲ ﺩﺭ ﺁﻧﺪ ﻭ ﻛﺎﺗﺪ ﺑﺮ ﺍﺳﺎﺱ ﺭﺍﺑﻄﻪﻫﺎﻱ ﺯﻳـﺮ ﺭﺥ ﺣﺮﺍﺭﺗﻲ ﻣﻲﺷﻮﺩ ﻭ ﺑﺎ ﺍﻧﺘﻘﺎﻝ ﮔﺮﻣﺎ ﺍﺯ ﺟﺮﻳﺎﻥ ﮔﺮﻡ ﺧﺮﻭﺟﻲ ﺗﻮﺭﺑﻴﻦ ﺩﻣﺎﻱ ﭘﺲ ﺍﺯ ﺧﺮﻭﺝ ﻭﺍﺭﺩ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﻭ ﺳـﭙﺲ ﻭﺍﺭﺩ ﻛﺎﺗـﺪ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ m1h1 w c

ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ 43 /... ﻣﻲﺩﻫﺪ ] 14 ﻭ :[15 ﺍﻟﻜﺘﺮﻭﺷــﻴﻤﻴﺎﻳﻲ ﺑــﺮ ﺭﻭﻱ ﺳــﻄﺢ ﺍﻟﻜﺘــﺮﻭﺩ ﺍﺳــﺖ. ﺩﺭ ﻭﺍﻛــﻨﺶ ﻫــﺎﻱ 1 O2 +2e- o O2 ) 8 ﺍﻟﻒ( ﻭﺍﻛﻨﺶ ﻛﺎﺗﺪ ) 8 ﺏ( ﻭﺍﻛﻨﺶ ﺁﻧﺪ H2 +O2- o H2O+2e- ) 8 پ( ﻭﺍﻛﻨﺶ ﻛﻠﻲ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ] :[2 ¹ ) (9 P H O 1 P P H O ﺩﺭ ﺩﺍﻧﺴﻴﺘﺔ ﺟﺮﻳﺎﻥ ﭘﺎﻳﻴﻦ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ﺍﺳﺖ ﻭ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺩﺍﻧﺴﻴﺘﺔ ﺟﺮﻳﺎﻥ ﺑﻪ ﻣﻴﺰﺍﻥ ﻛﻤﻲ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ. ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻓﻌﺎﻝﺳـﺎﺯﻱ ﺗﻮﺳـﻂ ﺭﺍﺑﻄـﺔ ﻧﻴﻤﻪ ﺗﺠﺮﺑﻲ ﭘﺎﺗﻠﺮـ ﻭﻟﻤﺮ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﻣﻲﺷﻮﺩ ] :[2 ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﺔ ﻭﻟﺘﺎژ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﺯ ﻣﻌﺎﺩﻟﺔ ﻣﺸﻬﻮﺭ ﻧﺮﻧﺴـﺖ ﻛـﻪ ﺑـﻪ ln ﺍﻧﺮژﻱ ﻓﻌﺎﻝﺳﺎﺯﻱ ﻋﺒﻮﺭ ﻛﻨﻨﺪ. ﺍﺗﻼﻑ ﺣﺎﺻﻞ ﺍﺯ ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻓﻌﺎﻝﺳﺎﺯﻱ ` n e F V exp ª 1 D n e F V º act act «RT RT ¹»¼ ) (11 ﻛﻪ i ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺍﻟﻜﺘﺮﻳﻜﻲ ﺍﺳﺖ ﻭ ﻭﺍﺣﺪ ﺁﻥ A/m2 ﻣﻲﺑﺎﺷـﺪ. ﺍﺯ RT ne F Eo E ﺭﺍﺑﻄﺔ ) (11 ﻧﻤﻲﺗﻮﺍﻥ Vact ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻣﺴـﺘﻘﻴﻢ ﺑـﻪ ﺩﺳـﺖ ﺁﻭﺭﺩ ﺍﻣـﺎ ﺑﺮﺍﻱ ﭘﻴﻞﻫﺎﻱ ﺳﻮﺧﺘﻲ ﺑﺎ ﺍﻟﻜﺘﺮﻭﺩ ﻫﻴﺪﺭﻭژﻥ ﻣﻘﺪﺍﺭ D ﺑﺮﺍﺑﺮ 0/5 ﻓـﺮﺽ ﻛﻪ E ﺑﻴﺸﻴﻨﺔ ﻭﻟﺘﺎژ ﺗﺌﻮﺭﻱ ﺍﺳﺖ ﻛﻪ ﻭﻟﺘﺎژ ﻣﺪﺍﺭ ﺑﺎﺯ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷـﻮﺩ ﻭ ﺯﻣﺎﻧﻲ ﻛﻪ ﻫﻴﭻ ﺟﺮﻳﺎﻧﻲ ﺩﺭ ﻣﺪﺍﺭ ﻧﺒﺎﺷﺪ ﻭﻟﺘﺎژ ﭘﻴﻞ ﺑﺮﺍﺑﺮ ﺁﻥ ﺧﻮﺍﻫـﺪ ﺑـﻮﺩ. ﻫﻤﺎﻥﻃﻮﺭ ﻛﻪ ﺩﻳﺪﻩ ﻣﻲﺷﻮﺩ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﻭﺍﻛـﻨﺶﺩﻫﻨـﺪﻩﻫـﺎ ﺑﻴﺸـﻴﻨﺔ ﻣﻲﺷﻮﺩ ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ ] :[16 i 2io ¹ ) (12 sinh 1 ne F ﻛﺎﺗﺪ ﻣﺤﺎﺳﺒﻪ ﻣﻲﺷﻮﺩ ] :[16.4.2 ﻭﻟﺘﺎژ ﻋﻤﻠﻜﺮﺩ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻭﻗﺘﻲ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺗﺤﺖ ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩﻱ ﺗﻮﻟﻴﺪ ﺟﺮﻳـﺎﻥ ﺧـﺎﺭﺟﻲ ) (13 ﻭﻟﺘﺎژ ﺧﺮﻭﺟﻲ ﭘﻴﻞ ﻫﻤﻴﺸﻪ ﻛﻤﺘﺮ ﺍﺯ ﻣﻘﺪﺍﺭ ﺑﻴﺸﻴﻨﺔ ﻭﻟﺘﺎژ ﺑﺎﺷﺪ. ﺍﻓﺖﻫﺎ ﻛـﻪ ﻣﻌﻤﻮﻻ ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﻧﺪ ﻋﺒﺎﺭﺕﺍﻧﺪ ﺍﺯ : PH PH O Eact, an J an exp RT ¹ Pref ¹ Pref ¹ io, an Po J ca Pref ¹ io,ca ﻛﺎﺭ ﻣﻲﻛﻨﺪ ﻣﻘﺪﺍﺭﻱ ﺍﻓﺖ ﻭﻟﺘﺎژ ﺩﺭ ﭘﻴﻞ ﺍﺗﻔﺎﻕ ﻣﻲﺍﻓﺘﺪ ﻛﻪ ﺑﺎﻋﺚ ﻣﻲﺷـﻮﺩ E exp act,ca RT ¹ ) (14 0.25 Pref ﻓﺸﺎﺭ ﺍﺗﻤﺴﻔﺮ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ. ﺛﺎﺑﺖﻫﺎﻱ ﻣﻮﺭﺩ ﻧﻴـﺎﺯ.1 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻓﻌﺎﻝﺳﺎﺯﻱ Vact ﺍﺯ ﺟﺪﻭﻝ ) (1 ﺑﻪ ﺩﺳﺖ ﻣﻲﺁﻳﻨﺪ..2 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﺍﻫﻤﻲ Vohm ﺟﺪﻭﻝ ) :(1 ﺛﺎﺑﺖﻫﺎﻱ ﻣﺤﺎﺳﺒﺎﺗﻲ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺗﺒﺎﺩﻟﻲ ] [17.3 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻏﻠﻈﺖ Vcon ﺑﻨﺎﺑﺮﺍﻳﻦ ﻭﻟﺘﺎژ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱﺷﺪﻩ ﺩﺭ ﻳﻚ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻋﻤﻠﻲ ﻣﻌﻤﻮﻻ ﺍﺯ ﻭﻟﺘﺎژ ﺑﺮﮔﺸﺖﭘﺬﻳﺮ ﻛﻤﺘﺮ ﺍﺳـﺖ. ﻭﻟﺘـﺎژ ﻋﻤﻠﻜـﺮﺩ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﭘـﺲ ﺍﺯ ﻣﺤﺎﺳﺒﺔ Vcon Vohm Vact ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﻴﻴﻦ ﻣﻲﺷﻮﺩ : ﻭ ) (10 2 RT Vact ﺍﺯ ﻃﺮﻓﻲ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺗﺒﺎﺩﻟﻲ ﺍﺯ ﺭﺍﺑﻄﺔ ﻧﻴﻤﻪﺗﺠﺮﺑـﻲ ﺑـﺮﺍﻱ ﺁﻧـﺪ ﻭ ﻭﻟﺘﺎژ ﭘﻴﻞ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ. ^ i io exp D E Vact Vohm Vcon ﺁﻧﺪ ﻛﺎﺗﺪ 2/13 108 1/149 1010 A γ 2 m ¹ 110 160 kj E act mol ¹ V ﺩﺭ ﺭﺍﺑﻄﺔ ﺑﺎﻻ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻣﻌﻤﻮﻻ ﺑﻪ ﻓﺸﺎﺭ ﺟﺰﺋﻲ ﮔﺎﺯﻫﺎ ﺩﻣﺎ ﻭ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺩﺭ ﻳﻚ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻭﺍﻗﻌﻲ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ. ﺩﺭ ﺍﺩﺍﻣـﻪ ﺑـﻪ ﻣﺤﺎﺳـﺒﺔ ﺍﻓﺖ ﻭﻟﺘﺎژ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﭘﺮﺩﺍﺧﺘﻪ ﻣﻲﺷﻮﺩ..1.4.2 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻓﻌﺎﻝﺳﺎﺯﻱ ﭘﻼﺭﻳﺰﺍﺳــﻴﻮﻥ ﻓﻌــﺎﻝﺳــﺎﺯﻱ Vact ﻭﺍﺑﺴــﺘﻪ ﺑــﻪ ﺳــﺮﻋﺖ ﻭﺍﻛــﻨﺶ.2.4.2 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﺍﻫﻤﻲ ﺍﻳﻦ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻧﺘﻴﺠﺔ ﻣﻘﺎﻭﻣﺖ ﺍﻟﻜﺘﺮﻭﺩﻫﺎ ﻭ ﺻﻔﺤﺎﺕ ﺍﺗﺼﺎﻝ ﺩﻫﻨـﺪﻩ ﺩﺭ ﺑﺮﺍﺑﺮ ﺟﺮﻳـﺎﻥ ﺍﻟﻜﺘـﺮﻭﻥﻫـﺎ ﻭ ﻣﻘﺎﻭﻣـﺖ ﺍﻟﻜﺘﺮﻭﻟﻴـﺖ ﺩﺭ ﺑﺮﺍﺑـﺮ ﺟﺮﻳـﺎﻥ ﻳﻮﻥﻫﺎﺳﺖ. ﺍﺯ ﺁﻧﺠﺎ ﻛﻪ ﺍﻳﻦ ﺍﻓﺖ ﻭﻟﺘﺎژ ﺑﻪ ﺻـﻮﺭﺕ ﻣﺴـﺘﻘﻴﻢ ﺑـﺎ ﺩﺍﻧﺴـﻴﺘﺔ ﺟﺮﻳﺎﻥ ﭘﻴﻞ ﻣﺘﻨﺎﺳﺐ ﺍﺳﺖ ﺑﻪ ﺁﻥ ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﺍﻫﻤﻲ ﮔﻔﺘﻪ ﻣـﻲﺷـﻮﺩ. ﺑـﺎ ﺍﻓﺰﺍﻳﺶ ﺩﺍﻧﺴﻴﺘﺔ ﺟﺮﻳﺎﻥ ﭘﻴﻞ ﺍﻳـﻦ ﺍﻓـﺖ ﻭﻟﺘـﺎژ ﻧﻴـﺰ ﺑـﻪ ﺗـﺪﺭﻳﺞ ﺍﻓـﺰﺍﻳﺶ O 2 o H2O 1 H2 + ﺍﻟﻜﺘﺮﻭﺷﻴﻤﻴﺎﻳﻲ ﻧﻴﺰ ﻣﺎﻧﻨﺪ ﻭﺍﻛﻨﺶﻫﺎﻱ ﺷﻴﻤﻴﺎﻳﻲ ﻭﺍﻛﻨﺸﮕﺮﻫﺎ ﺑﺎﻳـﺪ ﺍﺯ ﺳـﺪ

/ 44 ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ - ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ ﻣﻲﻳﺎﺑﺪ. ﺗﻠﻔﺎﺕ ﺍﻫﻤﻲ ﺑﻪ ﺷـﺪﺕ ﺗـﺎﺑﻊ ﺩﻣﺎﺳـﺖ. ﺑـﻪﺧﺼـﻮﺹ ﺩﺭ ﻣـﻮﺭﺩ ﮔﺮﺍﺩﻳﺎﻥ ﻏﻠﻈﺖ ﻣﺆﺛﺮﻧﺪ ﺍﺯ ﺟﻤﻠﻪ : ﻧﻔﻮﺫ ﺁﻫﺴـﺘﺔ ﻭﺍﻛﻨﺸـﮕﺮﻫﺎﻱ ﮔـﺎﺯﻱ ﺩﺭ ﺍﻟﻜﺘﺮﻭﻟﻴﺖ ﻛﻪ ﺑﺨﺶ ﻋﻤﺪﻩﺍﻱ ﺍﺯ ﺗﻠﻔـﺎﺕ ﺳـﻠﻮﻝ ﺩﺭ ﺍﻳـﻦ ﺑﺨـﺶ ﺍﺗﻔـﺎﻕ ﺣﻔﺮﻩﻫﺎﻱ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺍﻧﺤﻼﻝ ﻭﺍﻛﻨﺸﮕﺮﻫﺎ ﺩﺭ ﺍﻟﻜﺘﺮﻭﻟﻴﺖ ﺧﺮﻭﺝ ﺁﻫﺴـﺘﺔ ﻣﻲﺍﻓﺘﺪ. ﺑﺮ ﺍﻳﻦ ﺍﺳﺎﺱ ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﺍﻫﻤﻲ ﺑﺮﺍﻱ ﺁﻧﺪ ﻛﺎﺗﺪ ﺍﻟﻜﺘﺮﻭﻟﻴﺖ ﻭ ﻣﺤﺼﻮﻝ ﻭﺍﻛﻨﺶ ﺍﺯ ﺍﻟﻜﺘﺮﻭﻟﻴﺖ. ﺩﺭ ﻋﻤﻞ ﺍﻧﺘﻘﺎﻝ ﻛﻨﺪ ﻭﺍﻛﻨﺸﮕﺮﻫﺎ ﺑﻪ ﻣﻜﺎﻥﻫﺎﻱ ﻓﻌـﺎﻝ ﺍﻧﺠـﺎﻡ ﻭﺍﻛـﻨﺶ ﻣﺘﺼﻞﻛﻨﻨﺪﻩ ﺩﺍﺧﻠﻲ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ ] :[18 ) (15 i U an AS D Vohm, an 8d an ) (16 @ A> A 2 1 A B ) (17 din ) (18 Win i Uca 8D Vohm,ca 8d ca i UeL del Vohm,el i S D Uin Vohm,in A ﻭ B ﺛﺎﺑــﺖﺍﻧــﺪ ﻭ ﻣﻘــﺎﺩﻳﺮ ﺁﻥﻫــﺎ ﺑــﻪ ﺗﺮﺗﻴــﺐ 0/804 ﻭ 0/13 ﻣﻲﺑﺎﺷﺪ U. ﻭ d ﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻳﻦ ﺍﻓﺖ ﻭﻟﺘﺎژ ﺑﺴﻴﺎﺭ ﻛﻢ ﺍﺳﺖ. ﺍﻳﻦ ﺍﺗﻼﻑ ﺩﺭ ﭼﮕﺎﻟﻲ ﺟﺮﻳـﺎﻥ ﺑﺎﻻ ﺍﺛﺮ ﺑﻴﺸﺘﺮﻱ ﺩﺍﺭﺩ ﺯﻳﺮﺍ ﺭﺳﺎﻧﺪﻥ ﺳﻮﺧﺖ ﺑﻪ ﻣﻴﺰﺍﻥ ﻛﺎﻓﻲ ﺑﻪ ﻣﻜﺎﻥﻫـﺎﻱ ﺍﻧﺠﺎﻡ ﻭﺍﻛﻨﺶ ﺑﺎ ﻣﺸﻜﻞ ﺯﻳﺎﺩﻱ ﺭﻭﺑﻪﺭﻭ ﻣـﻲﺷـﻮﺩ. ﺍﻳـﻦ ﭘﻼﺭﻳﺰﺍﺳـﻴﻮﻥ ﺑـﺎ ﻛﻤﻴﺘﻲ ﺑﻪ ﻧﺎﻡ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺣﺪﻱ ﺑﻪ ﺻﻮﺭﺕ ﺭﺍﺑﻄﺔﺯﻳﺮ ﺑﻴﺎ. ﻥ ﻣﻲﺷﻮﺩ : ) (20 i il ¹ ln 1 RT Vcon ne F ﻧﻴﺰ ﺑﻪ ﺗﺮﺗﻴﺐ ﻣﻘﺎﻭﻣﺖ ﻭﻳﮋﻩ ﻭﺿﺨﺎﻣﺖ ﻫﺮ ﺟﺰء ﭘﻴـﻞ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺣﺪﻱ i L ﺟﺮﻳﺎﻧﻲ ﺍﺳﺖ ﻛـﻪ ﺩﺭ ﺁﻥ ﻧـﺮﺥ ﻣﺼـﺮﻑ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻣﻲﺑﺎﺷﻨﺪ. ﻣﻘﺪﺍﺭ ﺿﺨﺎﻣﺖ ﻫﺮ ﺟـﺰء ﺩﺭ ﺟـﺪﻭﻝ ) (2 ﺳﻮﺧﺖ ﺑﺮﺍﺑﺮ ﺑﺎ ﻣﻘﺪﺍﺭﺁﻥ ﺩﺭ ﺯﻣﺎﻧﻲ ﺍﺳﺖ ﻛـﻪ ﺑﻴﺸـﺘﺮﻳﻦ ﺳـﺮﻋﺖ ﺗﻐﺬﻳـﺔ ﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ D=22mm. ﻗﻄﺮ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﺟﺎﻣـﺪ ﻟﻮﻟـﻪﺍﻱ ﻭ ﺳﻮﺧﺖ ﺑﺮﻗﺮﺍﺭ ﺍﺳﺖ ﻭ ﺍﻳﻦ ﺩﺭ ﺯﻣﺎﻧﻲ ﺍﺗﻔﺎﻕ ﻣـﻲﺍﻓﺘـﺪ ﻛـﻪ ﻏﻠﻈـﺖ ﺭﻭﻱ Win 11mm ﻋﺮﺽ ﻣﺘﺼﻞﻛﻨﻨﺪﺓ ﺩﺍﺧﻠﻲ ﺍﺳﺖ. ﻣﻘﺎﻭﻣﺖ ﻭﻳﮋﻩ ﺗﺎﺑﻊ ﺩﻣﺎ ﺳﻄﺢ ﺑﻪ ﺻﻔﺮ ﺑﺮﺳﺪ ﻳﻌﻨﻲ ﺗﻤﺎﻡ ﻭﺍﻛﻨﺶﺩﻫﻨﺪﻩﻫﺎ ﻣﺼﺮﻑ ﺷﻮﺩ. ﺩﺭ ﺍﻳﻨﺠـﺎ ﺍﺳﺖ ﻭ ﺍﺯ ﺭﺍﺑﻄﺔ ﺗﺠﺮﺑﻲ ﺯﻳﺮ ﺑﻪ ﺩﺳﺖ ﻣﻲﺁﻳﺪ ] :[17 ﺑﺮﺍﻱ ﻣﺪﻝﺳﺎﺯﻱ Vcon ﺍﺯ ﻣﻘﺪﺍﺭ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺣﺪﻱ i L ﺑﺮﺍﺑﺮ b a exp T ¹ ) (19 U ﻛﻪ ﺛﺎﺑﺖﻫﺎﻱ a ﻭ b ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﻌﺎﺩﻟﺔ ) (19 ﺩﺭﺟﺪﻭﻝ ) (2 ﺁﻣﺪﻩ ﺍﺳﺖ. ﺳﻴﻮﻥ ﺍﻫﻤﻲ ] [17 ﺳﻴﻮﻥ ﺟﺪﻭﻝ ) :(2 ﺛﺎﺑﺖﻫﺎﻱ ﻣﺤﺎﺳﺒﺒﺒﺔﺔ ﭘﻼﺭﻳﺰﺍﺳ M A 9000 ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ].[16 ﻧﺮﺥ ﺟﺮﻳﺎﻥ ﻣﻮﻟﻲ ﻫﻴﺪﺭﻭژﻥ ﺩﺭ ﻭﺍﻛﻨﺶ ﺍﻟﻜﺘﺮﻭﺷـﻴﻤﻴﺎﻳﻲ ﺑـﺎ ﭼﮕـﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺍﺭﺗﺒﺎﻁ ﻣﺴﺘﻘﻴﻢ ﺩﺍﺭﺩ. ﺑﺎ ﺩﺍﻧﺴﺘﻦ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻗﺎﻧﻮﻥ ﻓﺎﺭﺍﺩﻱ ﻣﻲﺗﻮﺍﻥ ﻧﺮﺥ ﻣﻮﻟﻲ ﻫﻴﺪﺭﻭژﻥ ) (z ﺭﺍ ﺍﺯ ﺭﺍﺑﻄﺔ ﺯﻳﺮ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩ. a b d ﺁﻧﺪ 0/0000298-1392 100 ﻛﺎﺗﺪ 0/0000811 600 2200 ﺍﻟﻜﺘﺮﻭﻟﻴﺖ 0/0000294 10350 40.3.4.2 ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﻏﻠﻈﺖ ﺍﮔﺮ ﻭﺍﻛﻨﺸﮕﺮﻫﺎ ﺑﻪ ﻣﻘﺪﺍﺭ ﻛﺎﻓﻲ ﺑﻪ ﺍﻟﻜﺘـﺮﻭﺩ ﻧﺮﺳـﺪ ﻧـﻮﻋﻲ ﺍﻓـﺖ ﺩﺭ ﻣﻴﺰﺍﻥ ﭘﺘﺎﻧﺴﻴﻞ ﺩﺭ ﺍﻟﻜﺘﺮﻭﺩ ﺑﻪ ﻭﺟﻮﺩ ﻣﻲﺁﻳﺪ ﻭ ﺷﺎﻫﺪ ﺑﻪ ﻭﺟﻮﺩ ﺁﻣﺪﻥ ﻳـﻚ ﮔﺮﺍﺩﻳﺎﻥ ﻏﻠﻈﺖ ﺧﻮﺍﻫﻴﻢ ﺑﻮﺩ. ﮔﻮﻧﻪﻫﺎﻱ ﻭﺍﻛﻨﺶﺩﻫﻨـﺪﻩ ﺩﺭ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺑﺎﻳﺪ ﺍﺯ ﻛﺎﻧﺎﻝﻫﺎﻱ ﺳﻮﺧﺖ ﻭ ﻫﻮﺍ ﺍﺯ ﻃﺮﻳﻖ ﻣﺤﻴﻂ ﻣﺘﺨﻠﺨـﻞ ﺍﻟﻜﺘـﺮﻭﺩ ﺑـﻪ ﻣﺤﻞ ﺍﻧﺠﺎﻡ ﻭﺍﻛﻨﺶ ﺍﻧﺘﻘﺎﻝ ﻳﺎﺑﻨﺪ. ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻣﻜـﺎﻧﻴﺰﻡ ﻏﺎﻟـﺐ ﺍﻧﺘﻘـﺎﻝ ﻧﻔﻮﺫ ﺍﺳﺖ. ﺑﻪ ﻋﻼﻭﻩ ﻣﺤﺼﻮﻻﺕ ﻭﺍﻛـﻨﺶ ﺍﻟﻜﺘﺮﻭﺷـﻴﻤﻴﺎﻳﻲ ﻛـﻪ ﺩﺭ ﺁﻧـﺪ ﺍﻳﺠﺎﺩ ﻣﻲﺷﻮﻧﺪ ﭘﺲ ﺍﺯ ﻛـﺎﻫﺶ ﺩﺍﺩﻥ ﻏﻠﻈـﺖ ﺳـﻮﺧﺖ ﺩﺭ ﺍﻳـﻦ ﻧﺎﺣﻴـﻪ ﻣﻘﺎﻭﻣﺖ ﻏﻠﻈﺘﻲ ﺭﺍ ﺍﻓﺰﺍﻳﺶ ﻣﻲﺩﻫﻨﺪ. ﻋﻮﺍﻣﻞ ﻓﺮﺍﻭﺍﻧﻲ ﺩﺭ ﺑﻪ ﻭﺟﻮﺩ ﺁﻣـﺪﻥ i. Aact.N ) (21 z ne.f N ﺗﻌﺪﺍﺩ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﺳﺖ. ﻫﻤﭽﻨﻴﻦ ﻣﻘـﺪﺍﺭ ﮔﺎﺯﻫـﺎ ﺩﺭ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟـﻲ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺑـﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻮﺍﺯﻧﻪ ﻣﻲﺷﻮﺩ : z Uf z 2U a ) (22 ) (23 nh, in z ) (24 ) (25 ) (26 n H 2 O,in z z no2, in n H 2, in no2, in nh, out n H 2 O,out no2,out ﺳﺒﺐ ﻛﻨﺪ ﺷﺪﻥ ﻓﺮﺁﻳﻨﺪ ﻣﻲﺷﻮﺩ. ﺩﺭ ﺷﺮﺍﻳﻂ ﻋﺎﺩﻱ ﻋﻤﻠﻜﺮﺩ ﭘﻴﻞ ﻣﻘـﺎﺩﻳﺮ

ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ 45 /... nn 2,in ) (27 nn 2,out ﺍﻛﻨﻮﻥ ﭘﺲ ﺍﺯ ﻣﺤﺎﺳﺒﺔ ﺍﻓﺖ ﻭﻟﺘﺎژﻫـﺎﻱ ﻓـﻮﻕ ﻭﻟﺘـﺎژ ﻛـﺎﺭﻱ ﭘﻴـﻞ ﺑـﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻌﺎﺩﻟﺔ ) (10 ﺑﻪ ﺩﺳﺖ ﻣﻲﺁﻳﺪ. ﺗﻮﺍﻥ ﻣﺴﺘﻘﻴﻢ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺗﻮﺳﻂ ) (28 Vcellll I wfc ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮﺍﻱ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷﺖ : ) (29 Q surr ﮔﺮﻣﺎﻱ ﻫﺪﺭﺭﻓﺘﻪ ﺍﺯ ﺳﻴﺴﺘﻢ ﻣﻲﺑﺎﺷﺪ. ﻣﻘﺪﺍﺭ ﮔﺮﻣﺎﻱ ﻫﺪﺭﺭﻓﺘـﻪ ﺩﺭ ﻫﺮ ﺗﻮﺩﻩ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﺯ ﻃﺮﻳﻖ ﻣﻴﺰﺍﻥ ﺍﻓـﺖ ﻭﻟﺘـﺎژ ﺍﻳﺠـﺎﺩ ﺷـﺪﻩ ﺩﺭ ﭘﻴـﻞ ﺳﻮﺧﺘﻲ ﻗﺎﺑﻞ ﺣﺼﻮﻝ ﺍﺳﺖ. ) i Aact ( E Vcell ﺭﺍﺑﻄﺔ ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺑﺮﺍﻱ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ : m5 h5 m6 h6 wpt 0 ﺭﺍﻧﺪﻣﺎﻥ ﺁﻳﺰﻭﻧﺘﺮﻭﭘﻴﻚ ﺗﻮﺭﺑﻴﻦ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ : h5 h6 h5 h6 s ) (35 I 'Vloss Qsurr m 4s 4 m 3s 3 (ms )fuel s gen, FC K PT ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﻧﻴﺰ ﺩﺭ ﺗﻮﺭﺑﻴﻦ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ : ) m 5 (s 6 s 5 ) (36 ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ : ) (31 ﺗﻮﺭﺑﻴﻦ ﻻﺯﻡ ﺍﺳﺖ ﺁﻥ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻳﻚ ﺣﺠﻢ ﻛﻨﺘـﺮﻝ ﺩﺭ ﻧﻈـﺮ ﺑﮕﻴـﺮﻳﻢ. m fuel u 1 U f h fuel m4 h4 f l, Fc F f l ﻛﻪ w Fc,dc ﺗﻮﺍﻥ ﺗﻮﻟﻴـﺪﻱ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﺟﺎﻣـﺪ ﺍﺳـﺖ ﻭ ) (30 ﺑﺎﻳﺪ ﺍﺯ ﻟﺤﺎﻅ ﻃﺮﺍﺣﻲ ﺑﺎ ﻛﻤﭙﺮﺳﻮﺭ ﻣﻄﺎﺑﻘﺖ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ. ﺑﺮﺍﻱ ﻣﺪﻝﺳﺎﺯﻱ ) (34 m3 h3 m ffuell, FFc u U f u LHV wffc, dc Qssurr d 0 ﺗﻮﺭﺑﻴﻦ ﻭﻇﻴﻔﺔ ﺗﺄﻣﻴﻦ ﻛﺎﺭ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻛﻤﭙﺮﺳـﻮﺭ ﺭﺍ ﺑـﺮ ﻋﻬـﺪﻩ ﺩﺍﺭﺩ ﻭ s gen,gt.7.2 ﺗﻮﺭﺑﻴﻦ ﻗﺪﺭﺕ ﺗﻮﺭﺑﻴﻦ ﻗﺪﺭﺕ ﻭﻇﻴﻔﺔ ﺗﻮﻟﻴـﺪ ﺗـﻮﺍﻥ ﺭﺍ ﺩﺍﺭﺩ. ﺑـﺮﺍﻱ ﺗـﻮﺭﺑﻴﻦ ﻗـﺪﺭﺕ ﻣﻲﺗﻮﺍﻥ ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷﺖ :.5.2 ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﺤﺼــﻮﻻﺕ ﺧﺮﻭﺟــﻲ ﺍﺯ ﭘﻴــﻞ ﺳــﻮﺧﺘﻲ ﺑــﻪ ﻫﻤــﺮﺍﻩ ﻣﻘــﺪﺍﺭﻱ ﺍﺯ ﺳﻮﺧﺖ ﻛﻪ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻭﺍﻛـﻨﺶ ﻧـﺪﺍﺩﻩﺍﻧـﺪ ﻫﻤـﺮﺍﻩ ﺑـﺎ ﺳـﻮﺧﺖ ﺍﺿﺎﻓﻲ ﻭﺍﺭﺩ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﻲﺷﻮﻧﺪ ﻭ ﺩﺭ ﺁﻧﺠﺎ ﻭﺍﻛـﻨﺶ ﻣـﻲﺩﻫﻨـﺪ ﻭ ) (37 0 m 6 h6 m 7 h7 w PT ﻭ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﺗﻮﺭﺑﻴﻦ ﻗﺪﺭﺕ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ : ) m 6 (s 7 s 6 ) (38 s gen, PT ﮔﺎﺯﻫﺎﻱ ﺧﺮﻭﺟﻲ ﺑﺎ ﺩﻣﺎﻱ ﺑﺎﻻ ﺗﻮﻟﻴﺪ ﻣﻲﻛﻨﻨﺪ. ﺩﺭ ﻣـﺪﻝﺳـﺎﺯﻱ ﺟﺮﻳـﺎﻥ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻓﺮﺽ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﻓﺮﺁﻳﻨﺪ ﺍﺣﺘـﺮﺍﻕ ﻳـﻚ ﻓﺮﺁﻳﻨـﺪ ﻓﺸﺎﺭ ﺛﺎﺑﺖ ﺍﺳﺖ. ﻫﻤﭽﻨﻴﻦ ﻓﺮﺽ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﻫـﻴﭻ ﺍﺗـﻼﻑ ﺍﻧـﺮژﻱ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺭﺥ ﻧﻤﻲﺩﻫﺪ. ﻗﺎﻧﻮﻥ ﺍﻭﻝ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻚ ﺑﺮﺍﻱ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑـﻪ ﺻـﻮﺭﺕ ﺑﻘﺎﻱ ﺍﻧﺮژﻱ ﺑﺮﺍﻱ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷـﺖ ] :[19 ) (39 ﺯﻳﺮ ﻧﻮﺷﺖ ] :[19 ) (32.3 ﻣﻌﺎﺩﻻﺕ ﺗﻌﺎﺩﻟﻲ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ m1h1 m ffuell, Fc U f LHV LH H Qcombb m8 h8 0 Qsurr WFc wpt Qloss l F, dc d P (m3 U f u m fuel, Fc )h4 Qcomb m5 h5 Qloss ﻛﻪ ﮔﺮﻣﺎﻱ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻭ ﮔﺮﻣﺎﻱ ﻫﺪﺭ ﺭﻓﺘﻪ ﻣﻲﺑﺎﺷﺪ. ﻫﻤﭽﻨﻴﻦ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺑﻪ ﺻـﻮﺭﺕ ﺭﺍﻧﺪﻣﺎﻥ ﺣﺮﺍﺭﺗﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﺑﺎ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑـﻪ ﺻـﻮﺭﺕ 0 ﻧﺴﺒﺖ ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺗﻮﻟﻴﺪﻱ ﺧﺮﻭﺟﻲ ﺑـﻪ ﻧـﺮﺥ ﺍﻧـﺮژﻱ ﻭﺭﻭﺩﻱ ﺗﻌﺮﻳـﻒ ﺯﻳﺮ ﺍﺳﺖ : Qloss ) (33 Tsurr ﻣﻲﺷﻮﺩ ﺑﻨﺎﺑﺮﺍﻳﻦ ﺭﺍﺑﻄﺔ ﺭﺍﻧﺪﻣﺎﻥ ﺣﺮﺍﺭﺗﻲ ﻛﻞ ﺑـﻪ ﺻـﻮﺭﺕ ﺯﻳـﺮ ﺗﻌﺮﻳـﻒ m5 s5 m4 s4 (ms ) fuel f l, combb sgen, comb ﻣﻲﺷﻮﺩ : Qcomb ) (40 Tcomb w net Qttott K cyc th ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺭﺍﺑﻄﺔ ﺯﻳﺮ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩ :.6.2 ﺗﻮﺭﺑﻴﻦ

/ 46 ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ - ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ w net ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺗﻮﺳﻂ ﺳﻴﻜﻞ ﺍﺳﺖ ﻛﻪ ﺑﻪ ﺻـﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ : ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ 1273 K ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ. w T,Gen G n w Fc, Ac ) (41 w net ﻣﻲﺷﻮﺩ : ) (42 w Fc F,d dc ukinvert w Fc,Ac ) (43 KGenw T w T,Gen ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﻛﻞ ﺳﻴﺴﺘﻢ ﺑﺮﺍﺑﺮ ﻣﺠﻤﻮﻉ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﻫﺮ ﻳـﻚ ﺍﺯ ﺍﺟﺰﺍ ﻣﻲﺑﺎﺷﺪ ﺑﻨﺎﺑﺮﺍﻳﻦ ] :[19 s gen, C s gen, recup s gen, FC s i cyc s gen s gen, GT s gen, PT ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺍﺻﻠﻲ ﻃﺮﺍﺣﻲ ﺷـﺮﺍﻳﻂ ﻋﻤﻠﻜـﺮﺩﻱ ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒـﻲ ﺩﺭ ﺟﺪﻭﻝ ) (3 ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﺟﺪﻭﻝ ) :(3 ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩﻱ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﺣﺎﻟﺖ ﻧﻘﻄﻄﻄﺔﺔ ﻃﺮﺍﺣﻲ ﺟﺪﻭﻝ ) :(4 ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲ ﻣﺮﺍﺣﻞ ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﻧﻘﻄﻄﺔﺔ ﻃﺮﺍﺣﻲ ﻣﺮﺑﻮﻁ ﺑﻪ ﺷﻜﻞ ) (1 ﺩﺭ ﻄ ﺩﺑﻲ kg / s ﻓﺸﺎﺭ kpa ﺩﻣﺎ k ﺷﻤﺎﺭﻩ 4/123 101/3 288 1 4/123 405/2 460/798 4/123 388/99 865/9924 3 4/15685 372/78 1009/3 4 4/1648 352/52 1250 5 4/1648 189/54 1101/3 6 4/1648 105/5 967/29 7 4/1648 101/3 580 8 ﺷﻜﻞ ) (2 ﻣﻘﺎﻳﺴﻪﺍﻱ ﺑـﻴﻦ ﭘﻼﺭﻳﺰﺍﺳـﻴﻮﻥ ﺍﻫﻤـﻲ ﻓﻌـﺎﻝﺳـﺎﺯﻱ ﻭ 0/81 ﺭﺍﻧﺪﻣﺎﻥ ﻛﻤﭙﺮﺳﻮﺭ 0/84 ﺭﺍﻧﺪﻣﺎﻥ ﺗﻮﺭﺑﻴﻦ 0/89 ﺭﺍﻧﺪﻣﺎﻥ ﺗﻮﺭﺑﻴﻦ ﻗﺪﺭﺕ 0/8 ﺭﺍﻧﺪﻣﺎﻥ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ 0/98 ﺭﺍﻧﺪﻣﺎﻥ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ 0/95 ﺭﺍﻧﺪﻣﺎﻥ ژﻧﺮﺍﺗﻮﺭ AC 4/123 kg / s ﺩﺑﻲ ﻫﻮﺍﻱ ﻭﺭﻭﺩﻱ ﺷﺪﻥ ﻧﻤﻮﺩﺍﺭ ﺩﺭ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺑﺎﻻﺗﺮ ﻣﻲﺷﻮﺩ. ﺩﺭ ﻧﻤـﻮﺩﺍﺭ ﺷـﻜﻞ ) (2 %4 ﺍﻓﺖ ﻓﺸﺎﺭ ﺩﺭ ﻣﺒﺪﻝ ﺣﺮﺍﺭﺗﻲ ﺍﻫﻤﻴﺖ ﻫﺮ ﻳﻚ ﺍﺯ ﺍﻓﺖ ﻭﻟﺘﺎژﻫﺎ ﻭ ﺗﺄﺛﻴﺮﻱ ﻛﻪ ﺑﺮ ﻭﻟﺘﺎژ ﻛﻞ ﻣـﻲﮔـﺬﺍﺭﺩ %5 ﺍﻓﺖ ﻓﺸﺎﺭ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. 0/25 ﻓﺎﻛﺘﻮﺭ ﻣﺼﺮﻑ ﻫﻮﺍ 0/85 ﻓﺎﻛﺘﻮﺭ ﻣﺼﺮﻑ ﺳﻮﺧﺖ 1273 k ﺩﻣﺎﻱ ﺗﻮﺩﻩ 3000 A / m 2 ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ 0/89 ﺭﺍﻧﺪﻣﺎﻥ ﺗﺒﺪﻳﻞ DC-AC 834 mm 2 ﻣﺴﺎﺣﺖ ﭘﻴﻞ 12000 ﺗﻌﺪﺍﺩ ﭘﻴﻞ %4 ﺍﻓﺖ ﻓﺸﺎﺭ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻏﻠﻈﺖ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﻣﻲﺑﺎﺷﺪ. ﻫﻤﺎﻥﻃﻮﺭ ﻛﻪ ﺍﺯ ﺷـﻜﻞ ) (2 ﭘﻴﺪﺍﺳﺖ ﺩﺭ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥﻫﺎﻱ ﭘﺎﻳﻴﻦ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻏﺎﻟـﺐ ﻣﺮﺑـﻮﻁ ﺑﻪ ﻓﻌﺎﻝﺳﺎﺯﻱ ﺍﺳﺖ. ﺑﺎ ﺯﻳﺎﺩ ﺷـﺪﻥ ﺟﺮﻳـﺎﻥ ﻭ ﻣﻘﺎﻭﻣـﺖ ﺍﻫﻤـﻲ ﺍﻓـﺖ ﻭﻟﺘﺎژ ﺑﻪ ﺩﻟﻴﻞ ﺍﻳﻨﻜﻪ ﻫﻴﺪﺭﻭژﻥ ﺑﻪ ﺍﻧﺪﺍﺯﻩ ﻧﻤﻲﺗﻮﺍﻧﺪ ﺩﺭ ﺍﻟﻜﺘـﺮﻭﺩ ﻭﺍﻛـﻨﺶ ﺩﻫﺪ ﺑﻴﺸﺘﺮ ﻣﻲﺷﻮﺩ. ﺷﻜﻞ ﻟﮕﺎﺭﻳﺘﻤﻲ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻏﻠﻈـﺖ ﺑﺎﻋـﺚ ﺧـﻢ.4 ﺑﺤﺚ ﻭ ﻧﺘﺎﻳﺞ ﺟﺪﻭﻝ ) (4 ﻣﻴﺰﺍﻥ ﺗﻐﻴﻴﺮﺍﺕ ﺩﻣـﺎ ﻓﺸـﺎﺭ ﻭ ﺩﺑـﻲ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟـﻲ ﻣﺮﺍﺣﻞ ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﻣﺮﺑﻮﻁ ﺑﻪ ﺷـﻜﻞ ) (1 ﺩﺭ ﻧﻘﻄـﺔ ﻃﺮﺍﺣـﻲ ﺭﺍ ﻧﺸـﺎﻥ ﺷﻜﻞ ) :(2 ﻧﻤﻮﺩﺍﺭ ﻣﻘﺎﻳﺴﻪ ﺍﻱ ﭘﻼﺭﻳﺰﺍﺳﻴﻮﻥ ﺍﻫﻤﻲ ﻓﻌﺎﻝﺳﺎﺯﻱ ﻭ ﻏﻠﻈﺖ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴﻴﺪ ﺟﺎﻣﺪ ﺩﺭ ﺩﻣﺎﻱ 1273 ﻛﻠﻮﻳﻦ ﺩﺭ ﺭﺍﺑﻄــﺔ ) w Fc,Ac (40 ﻭ w T,Gen ﺑــﻪ ﺻــﻮﺭﺕ ﺯﻳــﺮ ﻣﺤﺎﺳــﺒﻪ ) (44 ﻣﻲﺩﻫﺪ. ﻣﻴﺰﺍﻥ ﺩﺑﻲ ﻭﺭﻭﺩﻱ ﻫﻮﺍ ﺑـﻪ ﻛﻤﭙﺮﺳـﻮﺭ 4/123 Kg / s ﻭ ﺩﻣـﺎﻱ

ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ 47 /... ﻫﻤﭽﻨﻴﻦ ﺑﺮﺍﻱ ﺍﻋﺘﺒﺎﺭﺳﻨﺠﻲ ﻧﺘﺎﻳﺞ ﻧﺘﺎﻳﺞ ﻋﺪﺩﻱ ﺑـﺎ ﻧﺘـﺎﻳﺞ ﺗﺠﺮﺑـﻲ ] [13 ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ. ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﻧﻘﻄﻪﺍﻱ ﻛﻪ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺑﻪ ﻣﻘﺪﺍﺭ ﭼﮕﺎﻟﻲ ﻣﻘﺎﻳﺴﻪ ﺷﺪﻩ ﺍﺳﺖ. ﻣﻄﺎﺑﻖ ﺷﻜﻞ ) (3 ﺍﻓﺰﺍﻳﺶ ﺩﻣﺎﻱ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﺟﺮﻳﺎﻥ ﺣﺪﻱ ﻣﻲﺭﺳﺪ ﺑﻪ ﺩﻟﻴﻞ ﺍﻓﺰﺍﻳﺶ ﻣﻴﺰﺍﻥ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻧﺎﺷﻲ ﺍﺯ ﻏﻠﻈﺖ ﺟﺎﻣﺪ ﻟﻮﻟﻪﺍﻱ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﻭﻟﺘﺎژ ﺁﻥ ﻣﻲﺷﻮﺩ. ﺩﺭ ﺩﺍﺩﻩﻫﺎﻱ ﺗﺠﺮﺑـﻲ ﻧﻴـﺰ ﻭ ﻛﺎﻫﺶ ﺷﺪﻳﺪ ﻭﻟﺘﺎژ ﻋﻤﻠﻜﺮﺩﻱ ﭘﻴﻞ ﺗﻮﺍﻥ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﻣﻘـﺪﺍﺭ ﺻـﻔﺮ ﺭﻭﻧﺪ ﻣﺸﺎﺑﻬﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻭ ﺩﺭﺳﺘﻲ ﻧﺘﺎﻳﺞ ﺭﺍ ﺗﺄﻳﻴﺪ ﻣﻲﻛﻨﺪ ﺍﻣـﺎ ﺍﺧـﺘﻼﻑ ﻣﻲﺷﻮﺩ. ﻫﻤﭽﻨﻴﻦ ﺍﻓﺰﺍﻳﺶ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﻧﺎﭼﻴﺰ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﻛﻪ ﻧﺎﺷﻲ ﺍﺯ ﻋﻮﺍﻣﻞ ﻣﺨﺘﻠﻔـﻲ ﺍﺳـﺖ. ﺩﺭ ﻋﻤـﻞ ﻓﺮﺁﻳﻨـﺪ ﺍﻟﻜﺘﺮﻭﺷﻴﻤﻴﺎﻳﻲ ﺷﺎﻣﻞ ﻣﻜﺎﻧﻴﺰﻡ ﭘﻴﭽﻴﺪﻩﺍﻱ ﺍﺳﺖ. ﻣﺪﻝ ﺳﺎﺯﻱ ﻫﺮ ﻛـﺪﺍﻡ ﺍﺯ ﺍﻓﺖ ﻫﺎ ﺧـﻮﺩ ﻧﻴﺎﺯﻣﻨـﺪ ﺩﺭ ﻧﻈـﺮ ﮔـﺮﻓﺘﻦ ﺭﻓﺘـﺎﺭﻫـﺎﻱ ﻣﻮﻟﻜـﻮﻟﻲ ﺍﺟـﺰﺍﻱ ﻭﺍﻛﻨﺶﺩﻫﻨﺪﻩ ﻣﻲ ﺑﺎﺷﺪ. ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﻣﺪﻟﻲ ﻛﻪ ﺩﺭ ﺗﺤﻘﻴﻖ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘـﻪ ﺗﺮﻛﻴﺒﻲ ﻣﻲﺷﻮﺩ ﺯﻳﺮﺍ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺷﺪﺕ ﺟﺮﻳﺎﻥ ﻧﺮﺥ ﺳﻮﺧﺖ ﻭﺭﻭﺩﻱ ﺑـﻪ ﭘﻴﻞ ﺍﻓﺰﺍﻳﺶ ﻭ ﺑﻪ ﺩﻟﻴﻞ ﺍﻓﺰﺍﻳﺶ ﺍﺭﺯﺵ ﺣﺮﺍﺭﺗﻲ ﺳﻮﺧﺖ ﻭﺭﻭﺩﻱ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ. ﺷﺪﻩ ﻫﻤﺎﻧﻨﺪ ﻣﺪﻝ ﻫﺎﻱ ﻗﺒﻠﻲ ﺍﺯ ﺗﻮﺯﻳﻊ ﺩﻣـﺎ ﻓﺸـﺎﺭ ﻭ ﺍﺟـﺰﺍﻱ ﺷـﻴﻤﻴﺎﻳﻲ ﺭﻭﻱ ﭘﻴﻞ ﺍﺧﺘﻼﻑ ﺩﻣﺎ ﻭ ﻓﺸﺎﺭ ﺑـﻴﻦ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟـﻲ ﺁﻧـﺪ ﻭ ﻛﺎﺗـﺪ ﻫﻤﺮﺍﻩ ﺑﻮﺩﻥ ﻧﻴﺘﺮﻭژﻥ ﻭ ﺩﻳﮕﺮ ﮔﺎﺯﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﻫﻮﺍ ﺑﺎ ﺍﻛﺴﻴﮋﻥ ﺻﺮﻓﻨﻈﺮ ﺷﺪﻩ ﺍﺳﺖ. ﺷﻜﻞ) :( 4 ﺍﺛﺮ ﺷﺪﺕ ﺟﺮﻳﺎﻥ ﺑﺮ ﺭﺍﻧﺪﻣﺎﻥ ﻭ ﺗﻮﺍﻥ ﺗﻮﻟﻴﺪﻱ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺷﻜﻞ ) (5 ﻋﻤﻠﻜﺮﺩ ﻓﻮﻕﺍﻟﻌﺎﺩﺓ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑـﺎ ﺳﻴﺴـﺘﻢ ﻣﻌﻤﻮﻟﻲ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ﻳﻜﻲ ﺍﺯ ﻋﻠﻠﻲ ﻛﻪ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﺩﻣﺎ ﺑﺎﻻ ﺍﺳﺘﻔﺎﺩﻩ ﺷﻮﺩ ﺍﻳﻦ ﺍﺳﺖ ﻛﻪ ﺳﻴﺎﻝ ﺩﺭ ﺣﺎﻝ ﻛـﺎﺭ ﻗﺒـﻞ ﺍﺯ ﻭﺭﻭﺩ ﺑـﻪ ﻣﺤﻔﻈﻪ ﺍﺣﺘﺮﺍﻕ ﺭﺍ ﭘﻴﺶﮔﺮﻡ ﻣﻲﻛﻨﺪ ﻭ ﻫﻤﭽﻨﻴﻦ ﺑﺎﻋﺚ ﺗﻮﻟﻴﺪ ﺍﻧﺮژﻱ ﺑﻴﺸﺘﺮ ﻳﺴﻪ ﺑﺎ ﻳﺎﻥ ﻭ ﻣﻘﺎﻳﻳﺴﻪ ﺷﻜﻞ ) :( 3 ﻧﻤﻮﺩﺍﺭ ﻭﻟﺘﺎژ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑﺮ ﺣﺴﺐ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﻣﻲﺷﻮﺩ. ﻫﺮ ﺩﻭ ﻋﺎﻣﻞ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺍﻧﺮژﻱ ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﺣﺎﻟﺖ ﻣﻌﻤﻮﻟﻲ ﻣﻘﺪﺍﺭ ﺗﺠﺮﺑﻲ ] [13 ﺩﺭ ﺩﻣﺎﻱ 1273 ﻛﻠﻮﻳﻦ ﻣﻲﺷﻮﺩ. ﺑﺮﺍﺳﺎﺱ ﻣﻘﺎﺩﻳﺮ ﭘﻴﺶﺑﻴﻨﻲ ﺷﺪﻩ ﺩﺭ ﺷﻜﻞ ) (5 ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ 23 ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺳﺮﻋﺖ ﺍﻧﺘﻘﺎﻝ ﺍﻟﻜﺘﺮﻭﻥ ﺩﺭ ﻭﺍﺣﺪ ﻣﺴﺎﺣﺖ ﻓﻌﺎﻝ ﭘﻴـﻞ ﺩﺭﺻﺪ ﻋﻤﻠﻜﺮﺩ ﺑﻬﺘﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺗﻮﺭﺑﻴﻦﮔﺎﺯ ﻣﻌﻤﻮﻟﻲ ﺩﺭﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴـﺘﻢ ﻣﻲﺑﺎﺷﺪ. ﺷﻜﻞ ) (4 ﺍﺛﺮ ﺷﺪﺕ ﺟﺮﻳﺎﻥ ﺑﺮ ﺗﻮﺍﻥ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴﺘﻢ ﻭ ﺭﺍﻧﺪﻣﺎﻥ ﺩﺍﺭﺩ. ﻫﻤﭽﻨﻴﻦ ﺑﺮﺍﻱ ﺍﻃﻤﻴﻨﺎﻥ ﺍﺯ ﺩﺭﺳﺘﻲ ﻧﺘـﺎﻳﺞ ﻧﺘـﺎﻳﺞ ﺑـﺎ ] [20 ﻣﻘﺎﻳﺴـﻪ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻓﺎﻛﺘﻮﺭ ﻣﺼﺮﻑ ﺳﻮﺧﺖ ﻭ ﻓﺎﻛﺘﻮﺭ ﻣﺼـﺮﻑ ﺷﺪﻩ ﺍﺳﺖ. ﻫﻮﺍ ﻭ ﻫﻤﭽﻨﻴﻦ ﺩﻣﺎﻱ ﻋﻤﻠﻴﺎﺗﻲ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﺛﺎﺑـﺖ ﺑﺎﺷـﺪ ﺑـﺎ ﺍﻓـﺰﺍﻳﺶ ﺷﻜﻞ ) (5 ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﻧﺴﺒﺖ ﻓﺸﺎﺭ ﺍﺛﺮ ﻛﻤﺘﺮﻱ ﺑﺮ ﺭﻭﻱ ﺳـﻴﻜﻞ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺗﻮﺍﻥ ﭘﻴﻞ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ ﻭ ﺑﻪ ﻣﻘﺪﺍﺭ ﻣﺎﻛﺰﻳﻤﻤﻲ ﻣﻲﺭﺳﺪ. ﺗﺮﻛﻴﺒﻲ ﻧﺴﺒﺖ ﺑﻪ ﺳﻴﺴﺘﻢ ﺗـﻮﺭﺑﻴﻦ ﮔـﺎﺯ ﺩﺍﺭﺩ. ﻫﻤﭽﻨـﻴﻦ ﻋﻠـﺖ ﺍﺧـﺘﻼﻑ ﺍﻓﺰﺍﻳﺶ ﺑﻴﺸﺘﺮ ﺷﺪﺕ ﺟﺮﻳﺎﻥ ﻭ ﻧﺰﺩﻳﻚ ﺷﺪﻥ ﺑﻪ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺣﺪﻱ ﺑﺮ ﻣﻮﺟﻮﺩ ﺑﺎ ﻧﺘﺎﻳﺞ ] [20 ﺑﻪ ﻋﻠﺖ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺳﻮﺧﺖ ﻫﻴﺪﺭﻭژﻥ ﺍﺳـﺖ ﻛـﻪ ﺍﺛﺮ ﺍﻓﺰﺍﻳﺶ ﻓﺮﺍﻭﺍﻥ ﺍﻓﺖﻫﺎ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﻭﻟﺘﺎژ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﺑﺎﻋﺚ ﻛـﺎﻫﺶ ﺩﺍﺭﺍﻱ ﺍﺭﺯﺵ ﺣﺮﺍﺭﺗﻲ ﺑﻴﺸﺘﺮﻱ ﻧﺴـﺒﺖ ﺑـﻪ ﻣﺘـﺎﻥ ﻣـﻲﺑﺎﺷـﺪ ﻭ ﺩﺭ ﻧﺘﻴﺠـﻪ ﺗﻮﺍﻥ ﭘﻴﻞ ﻛﻪ ﺳﻬﻢ ﻋﻤﺪﻩ ﺩﺭ ﺗﻮﺍﻥ ﻛﻠﻲ ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒـﻲ ﺗـﻮﺭﺑﻴﻦ ﮔـﺎﺯﻱ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﺍﻧﺪﻛﻲ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ. ﺷﻜﻞ ) (3 ﺍﺛﺮ ﭼﮕﺎﻟﻲ ﺟﺮﻳﺎﻥ ﺑﺮ ﻭﻟﺘـﺎژ ﺭﺍ ﺩﺭ ﭘﻴـﻞ ﻧﺸـﺎﻥ ﻣـﻲﺩﻫـﺪ. ﻣﺠﻬﺰ ﺑﻪ ﭘﻴﻞ ﺳـﻮﺧﺘﻲ ﺩﺍﺭﺩ ﻣـﻲﺷـﻮﺩ. ﺩﺭ ﻧﻬﺎﻳـﺖ ﺗـﻮﺍﻥ ﻛﻠـﻲ ﺳﻴﺴـﺘﻢ

/ 48 ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ - ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ ﻣﺼﺮﻑ ﺳﻮﺧﺖ ﺑﻪ ﺩﻟﻴﻞ ﻛﺎﻫﺶ ﻣﺼﺮﻑ ﺳﻮﺧﺖ ﺍﺑﺘـﺪﺍ ﺑﺎﻋـﺚ ﺍﻓـﺰﺍﻳﺶ ﺭﺍﻧﺪﻣﺎﻥ ﻣﻲﺷﻮﺩ ﺍﻣﺎ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺑﻴﺸﺘﺮ ﺍﺛﺮ ﻓﺎﻛﺘﻮﺭ ﻣﺼﺮﻑ ﺳـﻮﺧﺖ ﭼـﻮﻥ ﺍﻓﺖ ﻭﻟﺘﺎژ ﺑﺴﻴﺎﺭ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ ﺩﺭ ﻧﺘﻴﺠـﻪ ﻭﻟﺘـﺎژ ﭘﻴـﻞ ﺑﺴـﻴﺎﺭ ﻛـﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ ﻭ ﻛﺎﻫﺶ ﺗﻮﺍﻥ ﺑﺴﻴﺎﺭ ﺯﻳﺎﺩ ﻣﻲﺷﻮﺩ ﺳﭙﺲ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﺭﺍﻧﺪﻣﺎﻥ ﺷﻜﻞ ) :(5 ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﺑﺎ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻭ ﺑﺪﻭﻥ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺩﺭ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ 1250 ﻛﻠﻮﻳﻦ ﻭ ﺴ ﺴﺔﺔ ﺁﻥ ﺑﺎ ﻧﺘﺎﻳﺞ ] [20 ﻣﻘﺎﻳﺴ ﺍﺛﺮ ﺩﺭﺟﻪ ﺣﺮﺍﺭﺕ ﺗﻮﺭﺑﻴﻦ ﺑﺮ ﺭﺍﻧﺪﻣﺎﻥ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﻭ ﺗﻮﺍﻥ ﺧﺮﻭﺟﻲ ﺩﺭ ﺷﻜﻞ ) (6 ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﺩﻣـﺎﻱ ﻭﺭﻭﺩﻱ ﺗـﻮﺭﺑﻴﻦ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ ﺩﺭ ﺭﺍﻧﺪﻣﺎﻥ ﺣﺮﺍﺭﺗﻲ ﻛﺎﻫﺶ ﺩﻳﺪﻩ ﻣـﻲﺷـﻮﺩ. ﺍﻳـﻦ ﻧﺘﻴﺠـﻪ ﺟﺎﻟﺐ ﺗﻮﺟﻪ ﺍﺳﺖ ﻛﻪ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﺣﺮﺍﺭﺕ ﺑﻴﺸﺘﺮ ﺳـﻴﺎﻝﻛـﺎﺭﻱ ﺑﻌـﺪ ﺍﺯ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﺆﺛﺮ ﻧﻴﺴﺖ ﺍﻣﺎ ﺍﻳﻦ ﺩﻟﻴﻞ ﻋﻤـﺪﻩ ﺑـﺮﺍﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺑﺮﺍﻱ ﺳﻮﺯﺍﻧﺪﻥ ﺟﺮﻳﺎﻥ ﺳﻮﺧﺘﻲ ﻭﺍﻛﻨﺶ ﻧـﺪﺍﺩﻩ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﻣﻲﺑﺎﺷﺪ. ﺗـﻮﺍﻥ ﻭﻳـﮋﺓ ﺧﺮﻭﺟـﻲ ﺍﺯ ﺳـﻴﻜﻞ ﻭ ﻫﻤﭽﻨـﻴﻦ ﻛﻨﺘﺮﻝ ﺑﺨﺸﻲ ﺍﺯ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﺍﺯ ﺩﻻﻳﻞ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﺤﻔﻈﺔ ﺍﺣﺘـﺮﺍﻕ ﺍﺳـﺖ. ﺷﻜﻞ ) (6 ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﺍﻓﺰﺍﻳﺶ ﺩﺭﺟﻪ ﺣﺮﺍﺭﺕ ﻭﺭﻭﺩﻱ ﺑـﻪ ﺗـﻮﺭﺑﻴﻦ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺗﻮﺍﻥ ﺧﺮﻭﺟﻲ ﻣﻲﺷﻮﺩ. ﺷﻜﻞ ) :(7 ﺍﺛﺮ ﻓﺎﻛﺘﻮﺭ ﻣﺼﺮﻑ ﺳﻮﺧﺖ ﺑﺮ ﺭﺍﻧﺪﻣﺎﻥ ﻭ ﺗﻮﺍﻥ ﺗﻮﻟﻴﺪﻱ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﺷﻜﻞ ) (8 ﺍﺛﺮ ﻓﺸﺎﺭ ﺑﺮ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒـﻲ ﺑـﺎ ﺳﻴﺴﺘﻢ ﻣﻌﻤﻮﻟﻲ ﻣﻘﺎﻳﺴﻪ ﺷـﺪﻩ ﺍﺳـﺖ. ﺳﻴﺴـﺘﻢ ﺗﺮﻛﻴﺒـﻲ ﺑـﻪ ﺳـﺒﺐ ﻭﺭﻭﺩ ﺳﻮﺧﺖ ﺑﻴﺸﺘﺮ ﺑﻪ ﺁﻥ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺑﻴﺸﺘﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺳﻴﺴﺘﻢ ﻣﻌﻤﻮﻟﻲ ﺩﺍﺭﺩ ﺍﻟﺒﺘﻪ ﺑﺎﻳﺪ ﺩﻗﺖ ﻛﺮﺩ ﭼﻮﻥ ﺩﺭ ﺳﻴﺴﺘﻢ ﻣﻌﻤﻮﻟﻲ ﺗﻤﺎﻡ ﺳـﻮﺧﺖ ﻭﺍﺭﺩ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﻲﺷﻮﺩ ﺭﺍﻧﺪﻣﺎﻥ ﺍﮔـﺰﺭژﻱ ﻛـﺎﻫﺶ ﻣـﻲﻳﺎﺑـﺪ. ﺩﺭ ﻭﺍﻗـﻊ ﻧﺴــﺒﺖ ﺑــﻪ ﻣﻴــﺰﺍﻥ ﺳــﻮﺧﺘﻲ ﻛــﻪ ﻭﺍﺭﺩ ﺳﻴﺴــﺘﻢ ﻣﻌﻤــﻮﻟﻲ ﻣــﻲﺷــﻮﺩ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺑﺎﻻﺗﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ. ﺷﻜﻞ ) :(6 ﺍﺛﺮ ﺩﻣﺎﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺑﺮ ﺭﺍﻧﺪﻣﺎﻥ ﻭ ﺗﻮﺍﻥ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﻧﺴﺒﺖ ﻓﺸﺎﺭ 4 ﺩﺭ ﺷﻜﻞ ) (7 ﺍﺛﺮ ﻓﺎﻛﺘﻮﺭ ﻣﺼـﺮﻑ ﺳـﻮﺧﺖ ﺑـﺮ ﺗـﻮﺍﻥ ﺗﻮﻟﻴـﺪﻱ ﻛـﻞ ﺳﻴﺴﺘﻢ ﻭ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺩﻳﺪ. ﻫﻤﺎﻥﻃﻮﺭ ﻛﻪ ﻣﺸﺨﺺ ﺍﺳﺖ ﺗﻮﺍﻥ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴﺘﻢ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺍﺛﺮ ﻓـﺎﻛﺘﻮﺭ ﻣﺼـﺮﻑ ﺳـﻮﺧﺖ ﺑـﻪ ﺩﻟﻴـﻞ ﺍﻓﺰﺍﻳﺶ ﺍﻓﺖ ﻭﻟﺘﺎژ ﻓﻌﺎﻝﺳﺎﺯﻱ ﻭﻟﺘـﺎژ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﻛـﺎﻫﺶ ﻣـﻲﻳﺎﺑـﺪ. ﻞ ) :(8 ﻧﻤﻮﺩﺍﺭ ﺗﻐﻴﻴﺮﺍﺕ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺑﺮﺣﺴﺐ ﻓﺸﺎﺭﻛﻤﭙﺮﺳﻮﺭ ﺑﺮﺍﻱ ﻜﻞ ﺷﻜ ﻜ ﻛﺎﻫﺶ ﻭﻟﺘﺎژ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﺗﻮﺍﻥ ﻧﻴﺰﻣﻲﺷﻮﺩ. ﻫﻤﭽﻨﻴﻦ ﺍﻓﺰﺍﻳﺶ ﺍﺛﺮ ﻓـﺎﻛﺘﻮﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﺳﻴﺴﺘﻢ ﻣﻌﻤﻮﻟﻲ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻭ ﺎ ﻣﻲﺷﻮﺩ.

ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ 49 /... ﺷﻜﻞ ) (9 ﺍﺛﺮ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺑﺮ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺳﻴﺴﺘﻢ ﺟﺪﻭﻝ ) :(5 ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩﻱ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﺣﺎﻟﺖ ﻧﻘﻄﻄﻄﺔﺔ ﻃﺮﺍﺣﻲ ﺗﺴـﻪ ﻭ ﻫﻤﻜﺎﺭﺍﻧﺶ ﻣﻄﺎﻟﻌﻪ ﺣﺎﺿﺮ 59/4 56/9 % 174 173/7 kj/kg ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺑﺮﺍﻱ ﺣﺮﻛﺖ ﻛﻤﭙﺮﺳﻮﺭ 158 146 kj/kg ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺍﺯ ژﻧﺮﺍﺗﻮﺭ ﺣـــﺮﺍﺭﺕ ﺧـــﻮﺩ ﺑﺎﻋـــﺚ ﺍﻓـــﺰﺍ ﻳﺶ ﺗﻮﻟﻴـــﺪ ﺁﻧﺘﺮﻭﭘـــﻲ ﻭ ﺍﻓـــﺰﺍﻳﺶ - 0/69 V ﻭﻟﺘﺎژﻋﻤﻠﻜﺮﺩﻱ SOFC ﺑﺮﮔﺸﺖ ﻧﺎﭘﺬﻳﺮﻱ ﺳﻴﺴﺘﻢ ﻣﻲ ﺷﻮﺩ. ﺍﻓﺰﺍﻳﺶ ﺩﻣﺎﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺑﻪ 440 443,5 kj/kg ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺍﺯ SOFC ﻣﻌﻨﺎﻱ ﺍﻓﺰﺍﻳﺶ ﺳـﻮﺧﺖ ﻣﺼـﺮﻓﻲ ﻣـﻲ ﺑﺎﺷـﺪ ﻛـﻪ ﺍﺛـﺮ ﻧـﺎﻣﻄﻠﻮﺑﻲ ﺑـﺮ 598 589/5 kj/kg ﻛﻞ ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺗﻮﻟﻴﺪﻱ 2457 2443 kw ﺗﻮﺍﻥ ﺧﺎﻟﺺ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﻣﺠﻬﺰ ﺑﻪ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺭﺍ ﺩﺭ ﻧﺴﺒﺖ ﻓﺸﺎﺭ 4 ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ. ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻳﻊ ﺩﺭﺟﻪ ﺣﺮﺍﺭﺕ ﺑﺎﻻﻱ ﻭﺭﻭﺩﻱ ﺗﻮﺭﺑﻴﻦ ﻧﻴﺎﺯ ﺣﺮﺍﺭﺕ ﺍﺣﺘﺮﺍﻕ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﻣﻲ ﺑﺎﺷﺪ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻧﻴﺎﺯ ﺑﻪ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﺟﺮﻳﺎﻥ ﺳﻮﺧﺖ ﺑﻪ ﻣﺤﻔﻈﻪ ﺍﺣﺘﺮﺍﻕ ﻣﻲ ﺑﺎﺷﺪ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﺍﻧﺘﻘﺎﻝ ﺑﺮﮔﺸﺖ ﻧﺎﭘﺬﻳﺮﻱ ﺳﻴﺴﺘﻢ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ. ﻭﺍﺣﺪ ﺑﺎﺯﺩﻩ ﺣﺮﺍﺭﺗﻲ ﺳﻴﺴﺘﻢ ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﺷﻜﻞ) (10 ﺩﺭﺻﺪ ﺗﻮﺯﻳﻊ ﺁﻧﺘﺮﻭﭘـﻲ ﺗﻮﻟﻴـﺪﻱ ﺩﺭ ﺍﺟـﺰﺍﻱ ﻣﺨﺘﻠﻒ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﻧﺴﺒﺖ ﻓﺸﺎﺭ 4 ﻭ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ 1250 ﻛﻠﻮﻳﻦ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ﺑﻴﺸﺘﺮﻳﻦ ﺑﺮﮔﺸﺖﻧﺎﭘﺬﻳﺮﻱ ﺩﺭ ﻣﺤﻔﻈﺔ ﺍﺣﺘـﺮﺍﻕ ﻭ ﺳﭙﺲ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺭﺥ ﻣﻲﺩﻫﺪ ﺟﺎﻳﻲ ﻛﻪ ﺑﻴﺸﺘﺮﻳﻦ ﻣﻴﺰﺍﻥ ﺳﻮﺧﺖ ﺩﺭ ﺁﻧﺠﺎ ﻭﺍﻛﻨﺶ ﻣﻲﺩﻫﺪ. ﺍﻟﺒﺘﻪ ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﺩﺍﺷﺖ ﻛﻪ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻧﺴﺒﺖ ﻓﺸـﺎﺭ ﻛﻤﭙﺮﺳﻮﺭ ﺩﻣﺎﻱ ﺧﺮﻭﺟﻲ ﺍﺯ ﻛﻤﭙﺮﺳﻮﺭ ﺍﻓﺰﺍﻳﺶ ﺩﺭ ﻧﺘﻴﺠﺔ ﻣﻴﺰﺍﻥ ﺳـﻮﺧﺖ ﺗﺰﺭﻳﻘﻲ ﺑﻪ ﻣﺤﻔﻈﻪ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ. ﺩﺭ ﻧﺘﻴﺠـﻪ ﺩﺭ ﻧﺴـﺒﺖ ﻓﺸـﺎﺭﻫﺎﻱ ﺑـﺎﻻ ﻣﻴﺰﺍﻥ ﺗﺨﺮﻳﺐ ﺩﺭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑﻴﺸﺘﺮ ﻣﻲﺷﻮﺩ. ﺪﻱ ﺳﻴﺴﺘﻢ ﺗﻮﻟﻴﻴﺪﻱ ﺷﻜﻞ ) :(9 ﺍﺛﺮ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺑﺮ ﻧﺮﺥ ﺁﻧﺘﺮﻭﭘﻲ ﻴ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﻧﺴﺒﺖ ﻓﺸﺎﺭ 4 ﺑﻪ ﻣﻨﻈﻮﺭ ﺍﻋﺘﺒﺎﺭﺳﻨﺠﻲ ﻋﻤﻠﻜﺮﺩ ﻛﻠﻲ ﺳﻴﺴﺘ ﻢ ﻣﺪﻝ ﺷﺪﻩ ﻱ ﺣﺎﺿﺮ ﺑﺎ ﮔﺰﺍﺭﺵ ﻫﺎﻱ ﻗﺒﻠﻲ ﺗﺴﻪ ﻭ ﻫﻤﻜﺎﺭﺍﻥ ] [20 ﻣﻘﺎﻳﺴﻪ ﺷﺪ. ﺍﻳﻦ ﻣﻘﺎﻳﺴـﻪ ﺩﺭ ﺟﺪﻭﻝ ) ( 5 ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻣﻲ ﺗﻮﺍﻥ ﺗﺸﺎﺑﻬﺎﺕ ﺭﺍ ﻛﻪ ﺧﻮﺩ ﺗﺄﻳﻴﺪﻱ ﺑﺮ ﻓﺮﻣﻮﻝ ﺑﻨـﺪﻱ ﻫـﺎ ﻣـﻲ ﺑﺎﺷـﺪ ﻣﺸـﺎﻫﺪﻩ ﻛـﺮﺩ. ﺍﺧـﺘﻼﻑ ﺩﺭ ﭘﻴﺶ ﺑﻴﻨﻲ ﺗﻮﺍﻥ ﻭﻳﮋﺓ ﺧﺮﻭﺟﻲ ﺍﺯ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺑـﻪ ﺩﻟﻴـﻞ ﺗﻌـﺪﺍﺩ ﭘﻴـﻞ ﺗﻌﻴﻴﻦ ﺷﺪﻩ ﻣﻲ ﺑﺎﺷﺪ. ﻋﻠﺖ ﺩﺭ ﺍﺧﺘﻼﻑ ﺑﺎﺯﺩﻩ ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﻪ ﺩﻟﻴﻞ ﻃﺮﻳﻘﺔ ﺷﻜﻞ ) :(10 ﺩﺭﺻﺪ ﺗﻮﺯﻳﻊ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﺍﺟﺰﺍﻱ ﻣﺨﺘﻠﻒ ﺳﻴﻜﻞ ﻣﺤﺎﺳﺒﺔ ﺁﻧﺘﺎﻟﭙﻲ ﻣﻮﺍﺩ ﻭ ﺳﻮﺧﺖ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭ ﭘﻴﻞ ﺑﺎﺷﺪ. ﺍﺳـﺘﻔﺎﺩﻩ ﺗﺮﻛﻴﺒﻲ ﺩﺭ ﻧﺴﺒﺖ ﻓﺸﺎﺭ 4 ﻭ ﺩﻣﺎﻱ ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ 1250 ﻛﻠﻮﻳﻦ ﺍﺯ ﺳﻮﺧﺖ ﻫﻴﺪﺭﻭژﻥ ﺑﻪ ﺩﻟﻴﻞ ﺩﺍﺷﺘﻦ ﺍﺭﺯﺵ ﺣﺮﺍﺭﺗﻲ ﺑﺎﻻﺗﺮ ﻧﺴﺒﺖ ﺑﻪ ﻣﺘﺎﻥ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﺭﺍﻧﺪﻣﺎﻥ ﻣﻲ ﺷﻮﺩ ﺍﻣﺎ ﻣﺰﻳﺖ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ﺳـﻮﺧﺖ ﻫﻴﺪﺭﻭژﻥ ﻛﺎﻫﺶ ﻭﺯﻥ ﺳﻴﺴﺘﻢ ﻣﻲ ﺑﺎﺷﺪ..5 ﻧﺘﻴﺠﻪﮔﻴﺮﻱ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻳﻚ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦ ﮔﺎﺯ ﻭ ﭘﻴﻞ ﺳﻮﺧﺘﻲ ﺍﻛﺴـﻴﺪ ﺟﺎﻣﺪ ﺑﺎ ﺳﻮﺧﺖ ﻫﻴﺪﺭﻭژﻥ ﻣﻮﺭﺩ ﺑﺮﺭﺳﻲ ﻗـﺮﺍﺭ ﮔﺮﻓـﺖ. ﻧﺘـﺎﻳﺞ ﻧﺸـﺎﻥ ﺍﺯ ﺑﻪ ﺳﻮﺧﺖ ﺗﺰﺭﻳﻘﻲ ﺑﻴﺸﺘﺮ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﻧﻴﺎﺯ ﺑـﻪ ﺍﻓـﺰﺍﻳﺶ ﻧـﺮﺥ ﺍﻧﺘﻘـﺎﻝ ] [20 ﭘﺎﺭﺍﻣﺘﺮ

Downloaded from energy.kashanu.ac.ir at 9:36 +0430 on Friday August 7th 2020 ﭘﮋﻭﻫﺸﻰ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻯ - ﻧﺸﺮﻳﻪ ﻋﻠﻤﻰ / 50 ﻭ ﺁﻧﺘﺮﻭﭘﻲ ﺗﻮﻟﻴﺪﻱ ﺑﻪ ﺩﻟﻴﻞ ﺗﺰﺭﻳﻖ ﺳـﻮﺧﺖ ﺑﻴﺸـﺘﺮ ﺑـﻪ ﺍﻓﺰﺍﻳﺶ ﻣﻲﺩﻫﺪ ﺑـﻪ ﺑﻬﺒﻮﺩ ﻓﺮﺍﻭﺍﻥ ﺭﺍﻧﺪﻣﺎﻥ ﻧﺴﺒﺖ ﺑﻪ ﺣﺎﻟﺖ ﺑﺪﻭﻥ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺩﺍﺷـﺖ ﻫﻤﭽﻨﻴﻦ ﻧﺘﺎﻳﺞ ﻧﺸﺎﻥ ﺩﺍﺩ ﻛﻪ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ. ﻣﺤﻔﻈﺔ ﺍﺣﺘﺮﺍﻕ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ ﻃﻮﺭﻱﻛﻪ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻧﺴﺒﺖ ﺑﻪ ﺳﻴﺴﺘﻢ ﺑﺪﻭﻥ ﭘﻴـﻞ ﺳـﻮﺧﺘﻲ ﺩﺍﺭﺍﻱ ﺭﺍﻧـﺪﻣﺎﻥ ﭘـﺎﻳﻴﻦﺗـﺮﻱ ﻧﺴـﺒﺖ ﺑـﻪ ﺳﻴﺴـﺘﻢ ﺑـﺎ ﺳﻮﺧﺖ ﻫﻴﺪﺭﻭژﻥ ﻫﻤﭽﻨﻴﻦ ﺍﺛﺮﺍﺕ ﻧﺴـﺒﺖ ﻓﺸـﺎﺭ ﻛﻤﭙﺮﺳـﻮﺭ ﻭ ﺩﻣـﺎﻱ. ﺑﻴﺸﺘﺮ ﺍﺳﺖ % 25/5 ﻭﻟﻲ ﺩﺭ ﻋﻮﺽ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﺑﻪ ﻋﻠﺖ ﻋﺪﻡ ﻧﻴﺎﺯ ﺑﻪ ﺳﻮﺧﺖ ﻣﺘﺎﻥ ﺍﺳﺖ ﻧﺘﺎﻳﺞ ﻧﺸﺎﻥ. ﻭﺭﻭﺩ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﺑﺮ ﺳﻴﺴﺘﻢ ﺗﺮﻛﻴﺒﻲ ﻣﻮﺭﺩ ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ ﮔﺮﻓﺖ. ﺍﺻﻼﺡ ﻛﻨﻨﺪﺓ ﺳﻮﺧﺖ ﺍﺯ ﻧﻈﺮ ﺍﻧﺪﺍﺯﻩ ﻭ ﺍﺑﻌﺎﺩ ﻛﻮﭼﻚﺗﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ ﺭﺍﻧـﺪﻣﺎﻥ ﺭﺍ ﻛـﺎﻫﺶ ﻭ ﺗـﻮﺍﻥ ﺭﺍ ﺩﺍﺩ ﻛﻪ ﺍﻓﺰﺍﻳﺶ ﺩﻣﺎﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﺗﻮﺭﺑﻴﻦ ﻣﺮﺍﺟﻊ [1] Reijalt M., "Hydrogen and fuel cell education in Europe: [6] Chan S.H., Ho H.K., Tian Y. "Modelling of simple hybrid from when? And where? To here! And now",journal of Cleaner solid oxide fuel cell and gas turbine power plant", Production, vol. 19,2010. Power Sources, PP. 111-120, 2001 [2] [7] Williams M.C., Fuel Cell Handbook, 7th edition, EG&G Services Parsons,Science Applications International Chan S.H., Ho H.K., Tian Y., "Multi-level modeling of SOFC gas turbine hybrid system", Int Journal Hydrogen Corporation, Morgantown, 2004. Energy, PP. 889-900, 2002. [3] [8] Casas Y., Dewulf J., Arteaga-Perez L., Morales M., Journal Yang W.J., Park S.K., Kim T.S., Kim J.H., Sohn J.L.,Ro Langenhove H.V., Rosa E.,"Integration of solid oxide fuel cell S.T.," Design performance analysis of pressurized solid oxide in a sugar-ethanol factory: analysis of the efficiency and the fuel cell/gas turbine hybrid systems considering temperature environmental profile of the products", Journal of Cleaner constraints", Journal Power Sources, PP. 462 473, 2006. Production vol. 19, pp. 1395-1404, 2011. [9] [4] Massardo AF., Lubelli F., "Internal reforming solid oxide of a pressurized SOFC hybrid system using a fixed gas turbine fuel cell gas design ", Journal Power Sources, 170(1), PP.130 139.2007. turbine combined cycles (IRSOFC-GT)", Park S.K., Oh K.S. and Kim T.S., "Analysis of the design Transactions of the ASME. J Eng Gas Turbines Power, PP. 27 [10] Haseli Y., Dincer I., Naterera, GF., "Thermodynamic 35, 2000. modeling of a gas turbine cycle combined with a solid oxide fuel [5] cell", International Journal of Hydrogen Energy, PP. 5811 5822, Costamagna P., Magistri L., Massardo A.F., "Design and part-load performance of a hybrid system based on a solid oxide 2008. fuel cell reactor and a micro gas turbine", Journal Power [11] Haseli Y., Dincer I., Naterera GF., " Thermodynamic Sources, PP. 352 368, 2001. analysis of a combined gas turbine power system with a solid

Downloaded from energy.kashanu.ac.ir at 9:36 +0430 on Friday August 7th 2020 51 /... ﺷﺒﻴﻪﺳﺎﺯﻯ ﻭ ﺁﻧﺎﻟﻴﺰ ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﺗﻮﺭﺑﻴﻦﮔﺎﺯﻱ ﻣﺠﻬﺰ ﺑﻪ oxide fuel cell through exergy ", Thermochimica Acta, 480(2), [17] Alemrajabi, A., "Exergy based performance analysis of a PP. 1 9, 2008. solid oxide fuel cell and steam injected gas turbine hybrid power [12] Cohen H., Rogers G.F.C. and Saravabamutto H.I.H. "Gas system", International Jornal of hydrogen energy, PP. 2396- Turbine Theory", Heritage Publishers.1996. 2407, 2009. [13] Singhal SC., "Advances in solid oxide fuel cells", Journal [18] Song TW., Sohn JL., Kim TS., "Performance analysis of of Solid State Ionics, PP. 188-200, 2000. a tubular solid oxide fuel cell/gasturbine hybrid power system [14] Bejan A., Dincer I., Lorente S., "Miguel, Porous Media in based on a quasi-two dimensional model", Journal of Power Modern Technologies", Energy, Electronics, Biomedical and Sources, PP. 30-42, 2005. Environmental Engineering, Springer-Verlag, New York, 2004. [19] Shapiro H.N., Moran M.J., Fundamental of Engineering [15] Larminie A., Dicks A., Fuel Cell Systems Explained, 2nd Thermodynamics, John Wiley & Sons.,Motahar, S., 2006. edition, John Wiley & Sons Ltd.,West Sussex England, 2003. [20] Tse L., Galinaud F., Martinez-Botas RF., "Integration of [16] Akkaya AV., "Electrochemical model for performance solid oxid fuel cell into a gas analysis of a tubular SOFC", International Journal of Energy power for land. Sea and Air, 2007. Research,Vol. 31, PP.79-98, 2007. turbine", ASME turbo expo