42(4)-10.fm

Tài liệu tương tự
25421.dvi

(Microsoft Word Nguy?n Van Ph\372-ok.doc)

TẠP CHÍ KHOA HỌC, Đại học Huế, Tập 74B, Số 5, (2012), ĐÁNH GIÁ KHẢ NĂNG XỬ LÝ NƯỚC THẢI NUÔI TRỒNG THỦY SẢN NƯỚC LỢ CỦA BỂ LỌC SINH HỌC HIẾU K

NGHIÊN CỨU KHẢ NĂNG SỬ DỤNG CÁT MỊN

Journal of the Ceramic Society of Japan 115 [8] (2007) Paper º Ý Li 4 SiO 4 CO 2 ~ u Å o vt `l O ^Äëçêéíáçå oé~åíáçå çñ iá Q p

Nghiên cứu phân hủy cao su phế thải bằng phương pháp hóa nhiệt xúc tác Phạm Hoàng Giang Trường Đại học Khoa học Tự nhiên Luận văn Thạc sĩ ngành: Khoa

Microsoft Word - TT HV_NguyenThiThom_K18.doc

THùC TR¹NG TI£U THô RAU AN TOµN T¹I MéT Sè C¥ Së

TÓM TẮT B6-319 Lyù Thöôøng Kieät, Phöôøng 15, Quaän 11, HCMC Tel: Fax: Web: XỬ LÝ NƯỚC THẢI BỆNH VIỆN

Numerat619.pmd

Microsoft Word - 11-KHMT-52NGUYEN VAN CUONG(88-93)

THùC TR¹NG TI£U THô RAU AN TOµN T¹I MéT Sè C¥ Së

ANTENNAS FABRICATION FOR RFID UHF AND MICROWAVE PASSIVE TAGS

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Informat

Khoa hoc - Cong nghe - Thuy san so indd

Microsoft Word - TT lu?n án TS. Huy?n.doc

Lý lÞch khoa häc

Tạp chí Khoa học công nghệ và Thực phẩm số 11 (2017) ỨNG DỤNG PECTIN TỪ NHA ĐAM ĐỂ BAO BỌC SUBMICRON CURCUMIN Nguyễn Cẩm Hƣờng *, Nguyễn Bích Ng

NGHIÊN CỨU ẢNH HƢỞNG CỦA TỶ SỐ NÉN Ở ĐỘNG CƠ MỘT XYLANH KHI SỬ DỤNG NHIÊN LIỆU CNG HÌNH THÀNH HỖN HỢP BÊN NGOÀI A STUDY ON THE EFFECT OF COMPRESSION R

Microsoft Word - 07-MT-NGUYEN THI TUYET NHUNG(54-64)

JOURNAL OF SCIENCE OF HNUE DOI: / Educational Sci., 2015, Vol. 60, No. 8B, pp This paper is available online at ht

CDH

Microsoft Word NDKieu et al-So huyet.doc

KCT dao tao Dai hoc nganh TN Hoa hoc_phan khung_final

2014 SPECIAL TNPSC Group II & VAO த ர வ க க பன பட ம க பக க ன ல ன -ல ட கள - 1 -

PowerPoint 프레젠테이션

XX XX C C C F C C C F D D H H H H H H H H H H f f w } f f } f CC CC CC C DDD FF f f f f f H H H H H fo of f } f } } f G G G G G f of of } of of } w of

Tạp chí Khoa học công nghệ và Thực phẩm 12 (1) (2017) NGHIÊN CỨU CHỌN NHUYỄN THỂ HAI MẢNH VỎ CHỨA PROTEASE HOẠT TÍNH CAO VÀ XÁC ĐỊNH MỘT SỐ ĐẶ

examens préopératoires

Khoa hoc - Cong nghe - Thuy san.indd

TZ.dvi

TẠP CHÍ KHOA HỌC, Đại học Huế, Tập 75A, Số 6, (2012), BƯỚC ĐẦU ĐÁNH GIÁ CHẤT LƯỢNG MÔI TRƯỜNG NƯỚC MẶT Ở VƯỜN QUỐC GIA BẠCH MÃ, TỈNH THỪA THIÊ

TRƯỜNG ĐẠI HỌC VINH ĐỀ THI THỬ THPT QUỐC GIA NĂM 2019 LẦN 2 TRƯỜNG THPT CHUYÊN Bài thi: TOÁN Thời gian làm bài: 90 phút (Đề thi có 06 trang) (50 câu h

TẠP CHÍ NGHIÊN CỨU Y HỌC HẠ ÁP ÍCH NHÂN TRONG ĐIỀU TRỊ HỖ TRỢ TĂNG HUYẾT ÁP NGUYÊN PHÁT ĐỘ I Nguyễn Nhược Kim, Lại Thanh Hiền, Trần Thị Hải Vân Trường

Microsoft Word - NH-12-LE TRI NHAN(79-87)73

Preliminary data of the biodiversity in the area

untitled

ỨNG DỤNG INTERNET OF THINGS XÂY DỰNG NGÔI NHÀ THÔNG MINH APPLICATION OF INTERNET OF THINGS TO SMARTHOME NGUYỄN VĂN THẮNG (1), PHẠM TRUNG MINH (1), NGU

ÑAËC TÍNH KYÕ THUAÄT THANG MAÙY VCE

Microsoft Word 四技二專-化工群專一試題

NỘI DUNG ÔN TẬP HÓA 8

Bé Giao th«ng VËn t¶i

I. QUÁ TRÌNH ĐÀO TẠO LÝ LỊCH KHOA HỌC Họ và tên: LÊ ANH TUẤN Ngày, tháng, năm sinh: 1978 Học hàm/ học vị cao nhất: PGS. TS Đơn vị công tác hiện tại: -

ANTENNAS FABRICATION FOR RFID UHF AND MICROWAVE PASSIVE TAGS

Microsoft Word 四技二專-化工群專二試題

Microsoft Word - CNTP-15-NGUYEN VAN MUOI(92-97)26

lakshmiisahasranaamaavali.dvi

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN DỆT MAY-DA GIÀY VÀ THỜI TRANG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc CHƯƠNG TRÌNH ĐÀO TẠO

HƯỚNG DẪN VIẾT BÀI

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Nguyễn Sáng NGHIÊN CỨU XỬ LÝ NƢỚC THẢI CHĂN NUÔI BẰNG PHƢƠNG PHÁP

untitled

ISSN: Tröôøng Ñaïi hoïc Caàn Thô Journal of Science, Can Tho University Säú 28a (2013) Volume 28a (2013)

HWAHAK KONGHAK Vol. 38, No. 3, June, 2000, pp (Journal of the Korean Institute of Chemical Engineers) Microemulsion Pd/ZrO 2 Pd ( ,

ẢNH HƯỞNG CỦA CÁC CÔNG TRÌNH TRÊN CÁC CỬA SÔNG LỚN ĐẾN XÂM NHẬP MẶN VÀO HỆ THỐNG SÔNG ĐỒNG BẰNG SÔNG CỬU LONG Lương Quang Xô 1 Tóm tắt: Đồng bằng sông

Khoa hoc - Cong nghe - Thuy san.indd

Exam 1 Information 332: 345 Fall 2003 Exam 1 results are posted on WebCT. The average is 17.5/35. Exam 1 solutions are on reserve reading in SERC Libr

sundarakaandam_26.dvi

prabhaava.dvi

Some results of caculations of the LOCA accident in nuclear reactors

TrÝch yÕu luËn ¸n

KHOA H C CÔNG NGH NH H NG C A CÁC Y U T CÔNG NGH CHÍNH N KH N NG TRÍCH LY 1- DEOXYNOJIRIMYCIN (DNJ) T LÁ DÂU T M VI T NAM Hoàng Th L H ng 1, Nguy n Mi

TẠP CHÍ HÓA HỌC T. 53(3) THÁNG 6 NĂM 2015 DOI: / ẢNH HƯỞNG CỦA NANOCLAY ĐẾN TÍNH CHẤT CỦA VẬT LIỆU POLYME COMPOZIT

TrÝch yÕu luËn ¸n

Microsoft Word - Kiem dinh chat luong phan mem

bhuustuti.dvi

Muallim Journal of Social Sciences and Humanities (MJSSH) Volume 1- Issue 2 (2017), Pages / ISSN: eissn USAGE OF THE NEWS MAKER SOFTWA

NguyenThanhLong[1]

Microsoft Word - TP13-LE THI BICH PHUONG(84-91)

Microsoft Word - 18-TNN-34HUYNH VUONG THU MINH( )

Vũ Hoài Nam-Mạng và Hệ thống điện

Công tác lựa chọn thành phần cấp phối RCC cho thủy điện Lai Châu trong phòng thí nghiệm 1. Mở đầu Nguyễn Tài

01 (new).indd

43(1)-15.fm

Khoa hoïc Xaõ hoäi vaø Nhaân vaên 55 ĐỀ XUẤT MỘT SỐ GIẢI PHÁP NÂNG CAO CHẤT LƯỢNG CUNG CẤP NƯỚC SẠCH TẠI CÔNG TY TNHH MTV CẤP THOÁT NƯỚC KIÊN GIANG TH

CHÀO MỪNG NGÀY NHÀ GIÁO VIỆT NAM 20/11/2012 E b 1 4 ik ik y y x ( x x y ( ) 0 ) 0 ik 2 ( z d ) x, y, z G by e e e d K x dk 2 y ~ (2.7.a) Từ đó, có thể

Bản ghi:

Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004, pp. 477-484 cÿg ÿh ô SO 2 ( g»»ôk *, KŠ H/ é0dhàhz 426-791, 8Q 1Ÿ 1271 *t H/ ööéhz 245-711 ãò tq /Ÿ 253 (2003 11ö 19³ [, 2004 5ö 27³ >) Dry Removal of SO 2 in Flue Gas by Hydrated Dolomite Hee-Taik Kim, Yong-Jun Cho and Hae-Pyeong Lee*, Department of Chemical Engineering, Hanyang University, 1271, Sa 1-dong, Ansan, Kyeonggi-do 426-791, Korea *Department of Fire & Disaster Prevention, Samcheok National University, San 253, Gyo-dong, Samcheok, Gangwon-do 245-711, Korea (Received 19 November 2003; accepted 27 May 2004) ß D Ò s ÄGñ, d Ú é ê ço Ms- örs Gñ SO 2 Zôfõ fægk, fæk Zôf U s ~ G,.gŠ TGA, XRD, SEM -Ê BET ~ s }GŒ. dq Zôf 9,Jo /ä, d5 Ú dqññ 9 Gk, ð{²õ «ÄGñ 100 o CÑŠ 100-120~ Ÿ8 dq Zôf 9, Jo 50 m 2 /g _ ³Š dqÿ( :o ZôfÝŒ 25% _ ÍGŠ SO 2 Zô 16 _ ÍG Œ. Zôf ½É,Í zdä Ñ Âj2 s ÊûK ê, Zôf ½É,õ 32-60 µm³ fægs ) ZôD«Íß âik, ½É,Í 32 µm«g Zôf2 850 o C _ ÑŠ k³ g ZôD«ÝW s e O ÀÉŒ. È Abstract Domestic dolomite sorbents for the SO 2 removal were prepared and the characteristics of sorbents were investigated by TGA, XRD, SEM and BET. To improve SO 2 capture capacity, the dolomite sorbents were calcined, hydrated and recalcined at various conditions. The specific surface area of hydrated sorbents increased with increasing stirring rate, hydration temperature and hydration time. In this work, the hydration process by using ultrasonic wave was conducted at the hydration temperature of 100 o C for the hydration time of 100-120 min. The specific surface area of sorbent hydrated at the above condition, was increased by 25%, compared to that of unhydrated sorbent and the hydrated sorbent exhibited SO 2 removal capacity of 16 times higher than unhydrated sorbent. The effect of particle size for the sulfidation was examined. As a result, the highest SO 2 removal capacity could be achieved at the particle size of 32-60 µm. The SO 2 removal capacity of sorbent below 32 µm decreased due to sintering at about 850 o C. Key words: Dolomite, Sulfur Dioxide, Ultrasonic Wave, Hydrated Sorbent 1. C «@ õ õñ /ñ ݳ6 èm 9³z ö_æ2 SO 2 2,s Kè/2 O K ò O G «, hñš SO 2 ³ K,1«[ÎK éf³ &æê À, )éñ 1997 z _ÇÄ,Cs 270 ppm «G³ ä_gê ÀŒ. Š SO 2 õ IÝQÿ,.K ôt«lè¾,}æ fk, ŒŠK à_ë«íèæéœ[1]. «6K Í)(flue gas) O SO 2 I- à_,j 2 16-(slurry)õ «ÄK 5Rz(Wet FGD, flue gas desulfurization) k³ «Â ñ6 híñ jæ ÒM OÑ Àk[1-4], «ŽÑ fõ «ÄK é@ör Ù«õgæÊ ÀŒ[5, 6]. 6 5Rzà_o o fmásê à_ 8_ Ñ RgGÊ è@ê o jj -Ê Ê,í è@ Ùk³ G ñ ÝŒ ížê à_íè«gæê À2 Y_«Œ[7, 8]. Ks, Q Rz(dry FGD) 2 äqrz(semi dry FGD)o 5Rà_Ñ To whom correspondence should be addressed. E-mail: crelab@samcheok.ac.kr «øéo KŠ H/ é, / _ s,ägñ ÊæÉ5nŒ. 477

478 6ž>öÆÄCö«CU 9C SO 2 BMS«Jk³ o äñ 9GJ ßj ähí ÊÊ É9Ä«Jj Ë O 4n,,Ê 9Ñ IƒK 9Ä k³ Í jí ÍDGŒ. K, QR%zà_o SO 2 /s jg( :Ê, < - f(alkaline sorbent)õ QÆ K ~S=³ ݳ6(boiler) õ (stack) Í)Ñ )[ ~ G ³ à_«4c Ñ GŒ[9]. QR%zà_Ñ «Äæ2 % zf³2 K «T(magnesite), (limestone), ög (calcite), Ò (dolomite) Ù«À2) U¾, Ò o ¾ Î K %zds äê Àk, 5 Ñ! ôñ îñg2 ~«Œñ ak³ ÝÊæÉŒ[10-12]. s «ÄK õgë ÍÒ) Withumê Yoon[13]o è!9(methanol)³ dq s «ÄGk, Bak[14]o ùy ~ s «ÄK h Â~ Ò ê zdä U Ñ îk õg êõ è, GŒ. dís «ÄK DSI(dry sorbent injection)à_ñ Íß - Äæ2 ôf2 CaO«(O, CaO ôf Íß Ã Yo Ê5 ÑŠ (sintering) Ñ K 9,J(specific surface area) ÝQ SO 2 Q zdä Q, CaSO 4 @ k³ K,à LÎ(pore plugging) AéÑ ä ò(reaction zone)s ºj æ2 Y«Œ [15]. «6K éfyës g G,.K örë ÍÒ),õ «ÄGM d(hydration)õ QEc2 a«ýœ fj«ê à_«ñ G,Ê ôfýœ SO 2 fmás«âo ak³ ÝÊæ ÉŒ[16-18]. «öro dê_ñš CaO,à Ñ )Ë Ñ í½éq ä Gñ Ca(OH) 2 Í @ æê «õ ŒQ QZs A Ca(OH) 2 y í½éí Ýk³ g É-Ñ ÝŒ GÊ Êñ,àË«@Š j æ 9,J«Íî O 4n, zdä Q gæjk³ CaSO 4 Ñ K,à LÎs k³ À 2 ak³ ÝÊæÉŒ[12]. «Q îwê õg³š2 Cho Ù[19]«dQ ª ôfõ «ÄGñ SO 2 QR fmñ îk ê õ ÝÊK àí ÀŒ. hñš2 ê Ò zê«qê, «ÍÒ) Ò o { Šê fw, ãò öê t Ù(ÑŠ æ, 9Ä«IƒO O 4n 800-900 o C Ê5òÑŠ SO 2 ôd«âo ßY«ÀŒ.! Š á õgñš2 h Ò s «ÄK SO 2 ôfõ íèo IJk³ Ò s (calcination), d, é (recalcination) Ms- ê_s 0g fæk ôf ä U s ÊûGk, K dæ Q dñ!ñ ôf 9,Jê %zds 9GWk³ MJ dæqs _G2) c8ys &ÉŒ. 2. / 2-1. tg Oã 2-1-1. CaO2 CaCO 3 ÝŒ SO 2 Q ä «âo ak³ <s Àk ³[19], Ò s Qÿ CaCO 3 Q MgCO 3 ³z CO 2 ½É õ ~-Qk³ CO 2 Í À É-Ñ,à«OË (2 a s «ÄGñ, ä «âo Œà ê Ò (calcined dolomite, CaO MgO)s»s ÀŒ. CaCO 3 MgCO 3 &CaO MgO+2CO 2 (1) Ÿ @ C42 C4ƒ 2004 8 2-1-2. d/é ê Ò,àgÆ2 ò0(cylindrical)g泚 zdä Q SO 2 ½ÉÍ,à ½gõ L2,à LÎ(pore plugging) Ñ K SO 2, ei] AéÑ Âä CaOÍ @ æ ³ ôf SO 2 fmd(so 2 capture capacity)s IGQŒ[18]. Ca(OH) 2 Pz)(molar volume)2 CaO Pz)ÝŒ Jk ³, AéÑ ê Ò s dqÿ ½ÉË z)2 Í æê, «Rj dê ½ÉËs é Q A, í~éë«ñ É-Ñ *³Ò,à«@Š Š èo(swelling) gæõ äj ê Œ[12]. ³äJk³ % ä o ôf,õ ÝQk³ SO 2,às 0K ôf z³ ei]«ýæê z 9,J«ÍGj æ ³ zdä «Ñ ³ j êœ[16]. K dq Ò o dqÿ( :o ÎÝŒ Pz)Í ³ zdä Q,à ei]«m ÇŒ[20]. ª ôf(calcium based sorbent) ä o dæqñ j s ç2 ak³ <s Àk[21], h Ò s «ÄK á õgñš Gä, d5, dqñ Ù ÆQs -Gñ ÊûWk³ MJ dæqs s Às ak³, KŒ. CaO MgO+2H 2 O&Ca(OH) 2 Mg(OH) 2 (2) Ca(OH) 2 Mg(OH) 2 &CaO MgO+2H 2 O (3) R (2)Q (3) dê_ê é ê_s ªJk³ äþg, Ý Œ à 9,Jê è³k ½ÉËs»s À2 ak³ ÝÊæÉ Œ[22]. 2-2. Z tg g» á õgñš2 SO 2 õ fmg,.k ôf³ ãò öñš ê Ò s ~G,³ ~GGñ ÄGŒ. Ò o c ~ «CaCO 3 Q MgCO 3 «Ê, ³äJk³ CaCO 3 Q MgCO 3 Í 1-2:1 9S³ «P Àk, Ž ~k³ Fe 2 O 3, SiO 2 Ù ~ s WGÊ À2), á Y Ñ Äê Ò o Fe 2 O 3 õ WGÊ À( :o U8s (nê ÀŒ. á õgñš2 «Q ço Ò s ÄGñ Œ{ê ço örñ g ôfõ fægœ. Ò s 0 ~., Íù³(furnace) ÑŠ 30 o C/min Í ù ³ 950 o C>( 95 Q á, 950 o CÑŠ 10~Ñ Ù5s K (GŠ Gñ %!ä (decarbonation)s }GŒ. %! ä s Mn Q0õ k³ Gä, d5 -Ê dö r( dq ð{² Äñz)s ÎÎ -GŠ Q0 1g Í 30 mlõ ÍGñ dqzœ. dõ Mn Œ{, QÆ, ÑŠ 110 o C 5 ³ 24QÑ Ÿ8 QÆQE, (surface water)õ èqÿê, @ ê ôfõ ³_,³ ~GGñ s{ê ço ÆQk³ é Qÿ2 ê_s }GŒ. Table 1Ñ2 á õg ôf fæñš }K dæqës fqgœ. 2-3. tg Ïh á õgñš fæk ôf U s ÊûG,.gŠ TGA (thermogravimetric analysis), XRD(X-ray diffraction), SEM(scanning electron microscope), EDX(energy dispersive X-ray spectroscopy)q BET ~ s }GŒ. dq ôfõ 20 ml/min K 0~.,GÑŠ TGA (Shimadzu TA-50 series)õ «ÄGñ 950 o C>( 30 o C/min Íù

@ê Ò s «ÄK SO 2 QR BM 479 Table 1. Hydration conditions Items Amount of sample Amount of deionized water Stirring rate Hydration temperature Hydration time Hydration method Evaporation temperature Evaporation time Conditions 10 g 300 ml 500, 1,000, 1,500 rpm 20, 60, 80, 100 o C 20, 40, 60, 80, 100, 120 min with ultrasonic wave, without ultrasonic wave 110 o C 24 hr ³ 95QÿŠ 5 @Ñ ñ ôb y @õ Êû/ k, zdä M á ôf =Q @ ís e /,./ñ XRD(Rigaku RAD-C)~ s }GŒ. zdä s }G, M Ñ EDX(ISIS Oxford)õ «ÄGñ fæê ôf ò~ ê z dä M áñ ôf,=(morphology)õ e G,.Gñ SEM(Jeol-JSM-3 SCF)~ s }GÊ, fæk ôf CÆJ U s <4Ý,.Gñ ASAP 2000(Micrometrics, USA)ßjõ «ÄGñ ôf 9,Jê àz)(pore volume)õ +_GŒ. 2-4. / tà á õcñš fæk ôf zdä Y o Fig. 1Ñ fqk Y ßjõ «ÄGk, Y ßj2 j KÆQz, ä, Ú SO 2 ~,(URA-207)³ C~êŒ. Y öro ÏI 0.3 g f Æê ôf Q0õ ä,ñ, Q á, O 2 Q SO 2 K s ÆQGñ ä, Ñ K½Gk, O 2 Q SO 2 2 HYY(mixing chamber)ñš HYæÊ, 350 o C³ ùqe ä,ñ K½Wk³ K 5 dñ ñ s ÍJ k³ À GŒ. ä,2 ò Íù³ Ñ )k³ jæéê, Íù³ 5 2 850 o C³ Ù5s K(QZŒ. ä, ÑŠ ôfñ ôê ä, d2 SO 2 ~,õ gš õj d õ, GŒ. O 2 Í zdä Ñ Âj2 s ÊûG,.gŠ O 2 K½Ñ dõ céê, ôf ÜÍÑ ñ ä ê ôf 9,JÑ ñ SO 2 fmd -Ê ôf ½É,Í z dä Ñ Âj2 s oýiœ. C J zdä Y Æ Qs Table 2Ñ fqgœ. 3. ûg Z +{ 3-1. JC Ïh û/ á õcñš ÄK Ò ò s k³ EDX ~ êõ Table 3ê Fig. 2Ñ fqg2) ~ êõ oý, CaCO 3 Q MgCO 3 9S«1:0.7_»s e O ÀÉŒ. Ò ò ê dê Ò s QÆQ ôfõ k³ TGAõ «ÄGñ 950 o C>( 95 QÿŠ 5 dñ ñ y dõ oýi k Fig. 3Ñ ~ êõ ÉŒ. Ò ò o 510 o C_ ÑŠ y ÝÍ QÊæ 930 o C>( 47.5%_ y ÝÍ ³ 2) «2 CaCO 3 Q MgCO 3 ³z CO 2 Í ö æš CaO Q MgO³ Mhæ, )é ak³ @ÎêŒ. G(O dê Ò s QÆQ ôf Î2 400 o C>( ŠŠ¾ y ÝÍ ³ ŒÍ 510 o C>( 15.6%_ 1ó y ÝÍ ³ Ê 870 o C> ( 18.7%_ 2ó y ÝÍ ³ 2) 1ó y Ý2 Fig. 1. Schematic diagram of experimental apparatus. 1. Niddle valve 7. Soap flowmeter 2. Mass flow controller 8. Reactor 3. Flowmeter 9. Tube furnace 4. Miximg chamber 10. Gas analyser 5. Temperature indicator 11. Recoder 6. Threeway valve Table 2. Sulfation conditions Items Conditions Reaction temperature 850 o C Concentration of SO 2 1,000 ppm Total flow rate 100 ml/min, 150 ml/min Used sorbent raw dolomite, CaO, CaCO 3 Particle size 0-32 µm, 32-60 µm, 60-90 µm, 90-150 µm, 150-300 µm Sorbent amount 0.3 g, 3 g Ca(OH) 2 ³z í~é ö Ñ K Ý«, 2ó y Ý2 Mg(OH) 2 ³z í~é ö Ñ K Ý ak³ 0êŒ. á õcñš fæk ôf s e G,.gŠ Ò ò ê CaO Q0 -Ê Ms- ê_s Mn ôf XRD ~ êõ Fig. 4Ñ ÉŒ. Ò ò Î2 31.3 o, 41.5 o - Ê 50.9 o 2θ ÎÑŠ CaCO 3 U ) (peak)í Ê MgCO 3 U ) ÝñcÊ ÀŒ. Ò ò s 80 o CÑŠ 1,500 rpm /ä ³ 120~ Ÿ8 ð{²õ «ÄGñ Ms-K ôf ) õ Ý CaO ) Q M ³jWs e O À Œ. G(O MgO ) 2,(intensity)Í Ês O 4n,Ž (base-line) noiseí [Gñ C~«, )éñ,qõ G( : IŒ. Ò ò s k³ dqÿ2 ê_ñš ð{² «Ä ñ zí ôf U Ñ Âj2 s ÊûG,.gŠ }K SEM ~ êõ Fig. 5Ñ fqgœ. Ò ò o,à«è G( :o CÆõ Í(, Ò s Q Œ{ ð{²õ «ÄG( : Ê dqe fæk ôf2 Êo,à«æ Àk, Êo Table 3. EDX results of raw dolomite Elements O Mg Si Ca Compositions 59.81 16.36 0.71 23.12 Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

480 6ž>öÆÄCö«CU Fig. 2. EDX pattern of raw dolomite. Fig. 4. XRD powder patterns of sorbents: (a) raw dolomite, (b) CaO, and (c) hydrated/calcined dolomite. Fig. 3. Thermogravimetric analysis of (a) raw and (b) hydrated dolomite. Ÿ @ C42 C4ƒ 2004 8 ½ÉË«Ñ ~æ À{s < ÀŒ. :) ð{²õ «Ä/ ñ BÆK ôf2 ð{²õ «ÄG( :o ÎÝŒ ÊÊ Â K ½ÉË«@ æéê, ÝŒ GÊ Lj Õ, DàgÆõ äê À{s e O ÀŒ. dq ôf2, ½ÉË«Ñ ~æ ÀÊ, dq Œ{ QÆG2 ê_ñš í~é ö _Ñ g ½ÉÍ Ï Ñj zš( ³ ½É DÍ Ê4(Š 9,J«Íæ, ð{²õ «ÄGñ ôfõ fæg ð{ ²Ñ g ôf ½ÉË«Ï Ñj zš( ³ Dà gæí Ï g(š ½ÉË«Ï Ñ ~æ2 ak³ 0êŒ. ôf fæq d ÆQÑ ñ ôf U s oýd.g Š d ÆQs -G fæk ôfës k³ U 0 ôrs «ÄGñ 9,Js +_GŒ. Ò ò s 30 o C/min Íù ³ 870 o Cb( 95GŠ Q Œ{, 870 o CÑŠ Œ Q 10~Ñ Ù5k³ QÿÊ, Table 1Ñ fqk d ÆQÑ dq áñ ŒQ s{ ÆQk³ é QE ~ s }GŒ. Table 4Ñ ~ êõ fqgê, d ÆQÑ ñ 9,J dõ Fig. 6Ñ QGŒ. Fig. 6(a)ÑŠ d5 õ 100 o C³ Ê_GÊ Gä õ ÍQÿ ôf 9,Jo ÍGÊ, Fig. 6(b) ð{²õ «ÄG( :Ê Gä õ 1,500 rpm

@ê Ò s «ÄK SO 2 QR BM 481 Table 4. Structural properties of sorbents used in this study Specific surface area, [m 2 /g] Total pore volume, [ml/g] Raw dolomite 1.2 0.0023 Hydrated without ultrasonic 41.8 0.0191 wave at 100 o C for 120 min Hydrated with ultrasonic wave at 80 o C for 120 min 50.7 0.0221 dqe fæk ôf M 9,J 41.8 m 2 /gýœ u 25% _ Íê às Ýñ?Ê ÀŒ. «Q ço ê2 OÑŠ K Fig. 5 SEM ~ êq ³jG2) ð{²õ «ÄGñ d Q Î, ð{²ñ g ôf ½ÉË«Ï Ñj zš( ³ Dà gæí Ï g(š ½ÉË«Ï Ñ ~æ ³ 9,J«Íæ2 ak³ 0êŒ. 3-2. Ÿ?œ á õgñš fæk ôf U ~ êõ ³ Table 2Ñ fqk zdä ÆQ GÑŠ ôf %zds Êûg ÝIŒ.? Y ³2 O 2 K, ôf ÜÍ, ôf ½É D -Ê ôf 9,Js Ž_Gk, Œ{ê ço êës» ÉŒ. 3-2-1. O 2 O 2 Êé G Ò zdä o Œ{ê ço ä Dgõ í2 ak³ <s ÀŒ[12, 14]. Fig. 5. SEM images of various sorbents. k³ Ê_Q Î2 d5 Í s 9GJ à 9,Js äj ös < Àk, J_ dqño u 100~ _ ak³ 0êŒ. K, Fig. 6(c) ð{²õ «ÄGñ 1,500 rpm Gä ³ 80 o CÑŠ 120~ Ÿ8 dqzs ), ôf 9,J«50.7 m 2 /g_ ³Š 100 o CÑŠ 120~ Ÿ8 ð{²õ «ÄG( :Ê CaCO 3 MgCO 3 &CaO MgO+2CO 2 (4) 1 CaO MgO+SO 2 + -- O 2 &CaSO 4 +MgO (5) 2 1 MgO+SO 2 + -- O 2 &MgSO 4 (6) 2 Bak[14]o K CaOQ MgO Q0õ ÄK SO 2 Q zdä Y ÑŠ MgO Î2 èä ó Ñ Âj2 O 2 «(O CaO Î2 O 2 «zdä èä ó Ñ Ã s?( :2 ak³ è,gœ. K, àd ~.DÑŠ 2 R (5)Q ço ä Ñ g CaSO 4 õ @ G, 775 o C «G 5 ÑŠ2 R (6) ä Ñ g MgO³z MgSO 4 Í @ æ(o 850 o C Ê5ÑŠ2 MgSO 4 Í ùjk³ 8_GD )éñ ~g Í ³ Š SO 2 fmñ DñG( \GÊ (, ê_ñš ôf Dà Ñ s?ê CaO ½É,Ñ SO 2 õ Ê_Q ÿ2 òos KŒ2 õg êë[12, 23]«è,ê àí ÀŒ. Š, á õgñš2 O 2 Í zdä Ñ Âj2 s ÊûGD.gŠ Ms- Q Ò s k³ ä D³ K½æ2 D Æ s dqÿš zdä s }Gk, zdä 5 2 MgSO 4 ùj 8_ Ñ D Gñ MgO s åqo À s ak³ æ2 850 o Cõ Ž_GŒ. O 2 Os ÊûGD.gŠ O 2 d2 ŒP( :Ê ( 100 ml/min SO 2 Ñ 50 ml/min O 2 õ HYK D Æ ê O 2 õ àg( :Ê 100 ml/min SO 2 Os K½Q ÎOs Y Gk, êõ Fig. 7Ñ fqgœ. O 2 õ HYK D Æ ³ Î2 ä QÑ«88~ _ ê s ) SO 2 MI 317 ppmñ Gk, 130 ~«êo )b( MI õ K(GŒÍ Í ¾ ÍG Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

482 6ž>öÆÄCö«CU Fig. 7. Effect of O 2 gas on sulfation (sorbent: 0.3 g, SO 2 : 100 ml/min, sulfation temp.: 850 o C). Fig. 8. Sulfation for three types of sorbents (sorbent: 3 g, 100 ml/min SO 2 +50ml/min O 2, sulfation temp.: 850 o C). Fig. 6. Effect of hydration conditions on specific surface area. ñ 160~ «áz 2 zdä ««,}æ( :{s e O ÀÉŒ. O 2 õ àg( :Ê 100 ml/min SO 2 Os K½Q Î2 SO 2 Í ŠŠ¾ ÝGŒÍ 714 ppm _ MI Ñ Gk, ä QÑ«247~ _ êo )z Í Ÿ @ C42 C4ƒ 2004 8 ¾ ÍGñ 287~ «áz 2 zdä ««³ ( : 2 as < ÀÉŒ. ä Ü QÑs ÊsK SO 2 ô s 9Gg Ý O 2 Êé ñzí èä ó Ñ2 s Âj( :2 ak³ Ý«(O ð,ä Ñ2 s?2 ak³ e æéœ. «Q ço êõ g O 2 Êé GÑŠ2 ä ð,ñ MgO Í SO 2 Q ä Ñ ñgñ MgSO 4 õ G(O QÑ«êG Š ùjk³ 8_G, )éñ ~gí ³ Š %zñ,ñõ G( \Gj ök³ 2 ê ak³ @Îæ(O «Ñ gš2 ÍJ Y s Gñ ½gtO O ak³ 0êŒ. 3-2-2. ôf ÜÍÑ ñ zdä Ms- ê_s Mn Ò ê CaCO 3 Q CaO Qus ôf³ ÄGñ, ÎÎ zdä U s oýiœ. ôf Šo 3gs ígê ä, Æ o SO 2 100 ml/minq O 2 50 ml/minõ HYGñ ä 5 850 o C Ÿ³ ÆQ GÑŠ zdä s }G k, ÎÎ ôfëñ K zdä Y êõ Fig. 8Ñ f QGŒ. êõ oý, Ò o MI Í 223 ppm_ ³ Š MI Ñ G2) U1 QÑo 47~«ÉÊ, CaCO 3 2 MI 98 ppm_ >( G2) U1 QÑo 71~«Ék, CaO 2 57 ppm_ MI >( G2) 168~«æÉŒ.

@ê Ò s «ÄK SO 2 QR fm 483 Fig. 9. Effect of sorbent particle size on sulfation. Fig. 10. SEM morphology of sorbent below 32 µm. Ò ê CaCO 3 2 CaOÝŒ ä «Kíj,}æ MI Ñ G2) U-2 QÑ«EI(O MI õ K(G2 QÑ«ÎÎ 10~ê 16~ _ ) ägñ CaO Î2 4QÑ «K( ös e O ÀÉŒ. Fig. 11. Effect of specific surface area on sulfation. 3-2-3. ôf ½É, ôf ½É,Í zdä Ñ Âj2 s ÊûG,.gŠ ôf ½É,õ 32 µm «G, 32-60 µm, 60-90 µm, 90-150 µm, 150-300 µm,³ fægñ, ÎÎ Q0 0.3 gñ 100 ml/min SO 2 Q 50 ml/min O 2 õ HYK ä, Q 850 o CÑŠ zdä s }Gk, êõ Fig. 9Ñ QGŒ.,³z < À «ôf ½É,Í Ês SO 2 ô«ñ ³ (O 32 µm «G ôf2 ä «â( :o ak³ Œ. «K2 32 µm «G ½É,õ ä2 Î, ½É,Í wå Ê, )éñ 850 o C Ê5ÑŠ2 Ñ g,à LÎ Ú 4k³ g ä Ys º SO 2 Q ä «Ñ ³ ( :2 ak ³ ÝÊê àí Àk[12], Fig. 10 SEM,s gš zdä áñ2 ôf,ñ 4«³ û as e O ÀÉŒ. 3-2-4. 9,J ôf 9,J«zdä Ñ Âj2 s ÊûG,.gŠ ôf Q0Ë ÍÒ) 9,J«30.3, 42.8 -Ê 50.7 m 2 /g ô fõ «ÄGñ zdä s }Gk, Y êõ Fig. 11Ñ f QGŒ. ôf 9,J«30.3 m 2 /g, 42.8 m 2 /g, 50.7 m 2 /g ô f MI 2 ÎÎ 318 ppm, 169 ppm, 37 ppm«éê, MI Ñ G2 QÑ«ÎÎ 97~, 94~, 155~ _ k, 9,J«50.7 m 2 /g Î ôd«225~ Ÿ8 (æéœ. SO 2 ô s ªg á ê, ÎÎ 1.610 11 g adsorbed SO 2 /g adsorbate, 2.110 11 g adsorbed SO 2 /g adsorbate, 5.010 11 g adsorbed SO 2 /g adsorbate às»s ÀÉ2) «³z ôf 9,J«ÍWk³ SO 2 ô Ú zdä õ ÍQs e O ÀÉŒ. 4. û «á õgñš2 h Ò s «ÄK SO 2 ôfõ íèo I Jk³ fæk ôf U ~ ê zdä s K ôf % zds ÊûGk, Œ{ê ço Ës»s ÀÉŒ. (1) Ò ò s dqÿ2 ê_ñš 100 o CÑŠ 100-120~ Ÿ 8 1,500 rpm Gä ³ s-gs ) Íß Ã 9,Js» Ék, dq ), ð{²õ «ÄO )Ñ2 R( :o ÎÝ Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

484 6ž>öÆÄCö«gU Œ 25% «9,J«ÍGÊ, SO 2 ôo Ò ò u 16 _ Í æ2 ak³ Œ. (2) zdä ÑŠ ê O 2 2 ð,ä Ñ s? K ä «³ (O SO 2 ôñ2 s Âj( :IŒ. (3) ôf ½É,Í Ês SO 2 ôd«âo ak³ (O 32 µm«g, ôf2 850 o C Ê5ÑŠ ùñ K Ñ g SO 2 ôd«ýg2 ak³ Œ. (4) ôf 9,J Í2 SO 2 ô Ú zdä õ ÍQs e O ÀÉŒ. S+S 1. Ma, J., Fang, M. and Lau, N. T., Activation of La 2 O 3 for the Catalytic Reduction of SO 2 by CO, J. Catal., 163(2), 271-278 (1996). 2. Hibbert, D. B. and Campbell, R. H., Flue Gas Desulphurisation: Catalytic Removal of Sulphur Dioxide by Carbon Monoxide on Sulphided La 1-x Sr x CoO 3 : I. Adsorption of Sulphur Dioxide, Carbon Monoxide and Their Mixtures, Appl. Catal., 41(1), 273-287(1988). 3. Hibbert, D. B. and Campbell, R. H., Flue Gas Desulphurisation: Catalytic Removal of Sulphur Dioxide by Carbon Monoxide on Sulphided La 1-x Sr x CoO 3 : II. Reaction of Sulphur Dioxide and Carbon Monoxide in a Flow System, Appl. Catal., 41(1), 289-299(1988). 4. Yoo, K. S., Chu, K. J. and Kim, K. T., SO 2 Absorption Characteristics of Limestone Slurry in a Jet Bubbling Reactor, J. of Korean Society of Environmental Engineers, 20(9), 1191-1198(1998). 5. Yoo, K. S., Jeong, S. M. and Kim, S. D., The Removal of SO 2 and NO by Activated Carbon Fibers, HWAHAK KONGHAK, 37(2), 229-234(1999). 6. Park, B. B. and Rhee, B. S., The Removal of SO 2 and NO by Activated Carbon Fibers, HWAHAK KONGHAK, 37(2), 141-145(1999). 7. Kim, H., Park, D. W., Woo, H. C. and Chung, J. S., Reduction of SO 2 by CO to Elemental Sulfur over Co 3 O 4 -TiO 2 Catalysts, Appl. Catal. B, 19(3), 233-243(1998). 8. Lee, W. S., Lee, H. K., Jo, H. D., Kim, S. G. and Kim, I. W., A Study on Dissolution Rates of Domestic Limestones in Wet FGD Processes, HWAHAK KONGHAK, 34(6), 700-705(1996). 9. Muzio, L. J. and Offen, G. R., Dry Sorbent Emission Control Technologies: Part I. Fundamental Processes, JAPCA, 37(5), 642-654(1987). 10. Park, C. Y., Chung, S. H. and Cho, C. H., Dry Flue Gas Desulfurization in a Fixed Bed Reactor using Dolomite, HWAHAK KONGHAK, 22(6), 355-361(1984). 11. Kim, H. and Park, D. K., Reactivity of Calcined Limestone and Dolomite with Sulfur Dioxide, Korean J. Chem. Eng., 4(2), 143-148(1987). 12. Al-Shawabkeh, A., Matsuda, H. and Hasatani, M., Enhanced SO 2 Abatement with Water-Hydrated Dolomitic Particles, AIChE J., 43(1), 173-179(1997). 13. Withum, J. A. and Yoon, H., Treatment of Hydrated Lime with Methanol for In-Duct Desulfurization Sorbent Improvement, Environ. Sci. Technol., 23(7), 821-827(1989). 14. Bak, Y. C., Sulfation Reaction Kinetics of Pulverized Korean Dolomite and Limestone using Thermogravimetric Analyses, Energy Engg. J, 7(2), 216-222(1998). 15. Borgwardt, R. H., Calcium Oxide Sintering in Atmospheres Containing Water and Carbon Dioxide, Ind. Eng. Chem. Res., 28(4), 493-500(1989). 16. Newton, G. H., Harrison, D. J., Silcox, G. D. and Pershing, D. W., Control of SO x Emissions by in-furnace Sorbent Injection: Carbonates vs. Hydrates, Environmental Progress, 5(2), 140-145 (1986). 17. Christman, P. G. and Edgar, T. F., Distributed Pore-Size Model for Sulfation of Limestone, AIChE J., 29(3), 388-395(1983). 18. Irabien, A., Cortabitarte, F., Viguri, J. and Ortiz, M. I., Kinetic Model for Desulfurization at Low Temperatures using Calcium Hydroxide, Chem. Eng. Sci., 45(12), 3427-3433(1990). 19. Cho, Y. H, Oh, S. C., Lee, H. P., Kim, H. T. and Yoo, K. O., Dry Removal of SO 2 in Flue Gas by Hydrated Calcium-Based Sorbent, J. of Korean Society of Environmental Engineers, 21(11), 2143-2157(1999). 20. Hartman, M. and Coughlin, R. W., Oxidation of SO 2 in a Tricklebed Reactor Packed with Carbon, Chem. Eng. Sci., 27(5), 867-880 (1972). 21. Kirchgessner, D. A., Gullet, B. K. and Lorrain, J. M., Activation and Reactivity of Novel Calcium-Based Sorbents for dry SO 2 Control in Boilers, Powder Technology, 58(3), 221-229(1989). 22. Howard, J. R., Fluidized Beds: Combustion and Applications, 1st ed., Applied Science Publishers, Barking, Essex, England, 221(1983). 23. Dennis, J. S. and Hayhurst, A. N., The Effect of CO 2 on the Kinetics and Extent of Calcination of Limestone and Dolomite Particles in Fluidised Beds, Chem. Eng. Sci., 42(10), 2361-2372 (1987). Ÿ @ C42 C4ƒ 2004 8