42(4)-10.fm

Kích thước: px
Bắt đầu hiển thị từ trang:

Download "42(4)-10.fm"

Bản ghi

1 Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004, pp cÿg ÿh ô SO 2 ( g»»ôk *, KŠ H/ é0dhàhz , 8Q 1Ÿ 1271 *t H/ ööéhz ãò tq /Ÿ 253 ( ö 19³ [, ö 27³ >) Dry Removal of SO 2 in Flue Gas by Hydrated Dolomite Hee-Taik Kim, Yong-Jun Cho and Hae-Pyeong Lee*, Department of Chemical Engineering, Hanyang University, 1271, Sa 1-dong, Ansan, Kyeonggi-do , Korea *Department of Fire & Disaster Prevention, Samcheok National University, San 253, Gyo-dong, Samcheok, Gangwon-do , Korea (Received 19 November 2003; accepted 27 May 2004) ß D Ò s ÄGñ, d Ú é ê ço Ms- örs Gñ SO 2 Zôfõ fægk, fæk Zôf U s ~ G,.gŠ TGA, XRD, SEM -Ê BET ~ s }GŒ. dq Zôf 9,Jo /ä, d5 Ú dqññ 9 Gk, ð{²õ «ÄGñ 100 o CÑŠ ~ Ÿ8 dq Zôf 9, Jo 50 m 2 /g _ ³Š dqÿ( :o ZôfÝŒ 25% _ ÍGŠ SO 2 Zô 16 _ ÍG Œ. Zôf ½É,Í zdä Ñ Âj2 s ÊûK ê, Zôf ½É,õ µm³ fægs ) ZôD«Íß âik, ½É,Í 32 µm«g Zôf2 850 o C _ ÑŠ k³ g ZôD«ÝW s e O ÀÉŒ. È Abstract Domestic dolomite sorbents for the SO 2 removal were prepared and the characteristics of sorbents were investigated by TGA, XRD, SEM and BET. To improve SO 2 capture capacity, the dolomite sorbents were calcined, hydrated and recalcined at various conditions. The specific surface area of hydrated sorbents increased with increasing stirring rate, hydration temperature and hydration time. In this work, the hydration process by using ultrasonic wave was conducted at the hydration temperature of 100 o C for the hydration time of min. The specific surface area of sorbent hydrated at the above condition, was increased by 25%, compared to that of unhydrated sorbent and the hydrated sorbent exhibited SO 2 removal capacity of 16 times higher than unhydrated sorbent. The effect of particle size for the sulfidation was examined. As a result, the highest SO 2 removal capacity could be achieved at the particle size of µm. The SO 2 removal capacity of sorbent below 32 µm decreased due to sintering at about 850 o C. Key words: Dolomite, Sulfur Dioxide, Ultrasonic Wave, Hydrated Sorbent 1. C õ õñ /ñ ݳ6 èm 9³z ö_æ2 SO 2 2,s Kè/2 O K ò O G «, hñš SO 2 ³ K,1«[ÎK éf³ &æê À, )éñ 1997 z _ÇÄ,Cs 270 ppm «G³ ä_gê ÀŒ. Š SO 2 õ IÝQÿ,.K ôt«lè¾,}æ fk, ŒŠK à_ë«íèæéœ[1]. «6K Í)(flue gas) O SO 2 I- à_,j 2 16-(slurry)õ «ÄK 5Rz(Wet FGD, flue gas desulfurization) k³ «Â ñ6 híñ jæ ÒM OÑ Àk[1-4], «ŽÑ fõ «ÄK Ù«õgæÊ ÀŒ[5, 6]. 6 5Rzà_o o fmásê à_ 8_ Ñ RgGÊ o jj -Ê Ê,í Ùk³ G ñ ÝŒ ížê à_íè«gæê À2 Y_«Œ[7, 8]. Ks, Q Rz(dry FGD) 2 äqrz(semi dry FGD)o 5Rà_Ñ To whom correspondence should be addressed. «øéo KŠ H/ é, / _ s,ägñ ÊæÉ5nŒ. 477

2 478 6ž>öÆÄCö«CU 9C SO 2 BMS«Jk³ o äñ 9GJ ßj ähí ÊÊ É9Ä«Jj Ë O 4n,,Ê 9Ñ IƒK 9Ä k³ Í jí ÍDGŒ. K, QR%zà_o SO 2 /s jg( :Ê, < - f(alkaline sorbent)õ QÆ K ~S=³ ݳ6(boiler) õ (stack) Í)Ñ )[ ~ G ³ à_«4c Ñ GŒ[9]. QR%zà_Ñ «Äæ2 % zf³2 K «T(magnesite), (limestone), ög (calcite), Ò (dolomite) Ù«À2) U¾, Ò o ¾ Î K %zds äê Àk, 5 Ñ! ôñ îñg2 ~«Œñ ak³ ÝÊæÉŒ[10-12]. s «ÄK õgë ÍÒ) Withumê Yoon[13]o è!9(methanol)³ dq s «ÄGk, Bak[14]o ùy ~ s «ÄK h Â~ Ò ê zdä U Ñ îk õg êõ è, GŒ. dís «ÄK DSI(dry sorbent injection)à_ñ Íß - Äæ2 ôf2 CaO«(O, CaO ôf Íß Ã Yo Ê5 ÑŠ (sintering) Ñ K 9,J(specific surface area) ÝQ SO 2 Q zdä Q, CaSO k³ K,à LÎ(pore plugging) AéÑ ä ò(reaction zone)s ºj æ2 Y«Œ [15]. «6K éfyës g G,.K örë ÍÒ),õ «ÄGM d(hydration)õ QEc2 a«ýœ fj«ê à_«ñ G,Ê ôfýœ SO 2 fmás«âo ak³ ÝÊæ ÉŒ[16-18]. «öro dê_ñš CaO,à Ñ )Ë Ñ í½éq ä Gñ Ca(OH) 2 æê «õ ŒQ QZs A Ca(OH) 2 y í½éí Ýk³ g É-Ñ ÝŒ GÊ j æ 9,J«Íî O 4n, zdä Q gæjk³ CaSO 4 Ñ K,à LÎs k³ À 2 ak³ ÝÊæÉŒ[12]. «Q îwê õg³š2 Cho Ù[19]«dQ ª ôfõ «ÄGñ SO 2 QR fmñ îk ê õ ÝÊK àí ÀŒ. hñš2 ê Ò zê«qê, «ÍÒ) Ò o { Šê fw, ãò öê t Ù(ÑŠ æ, 9Ä«IƒO O 4n o C Ê5òÑŠ SO 2 ôd«âo ßY«ÀŒ.! Š á õgñš2 h Ò s «ÄK SO 2 ôfõ íèo IJk³ Ò s (calcination), d, é (recalcination) Ms- ê_s 0g fæk ôf ä U s ÊûGk, K dæ Q dñ!ñ ôf 9,Jê %zds 9GWk³ MJ dæqs _G2) c8ys &ÉŒ. 2. / 2-1. tg Oã CaO2 CaCO 3 ÝŒ SO 2 Q ä «âo ak³ <s Àk ³[19], Ò s Qÿ CaCO 3 Q MgCO 3 ³z CO 2 ½É õ ~-Qk³ CO 2 Í À É-Ñ,à«OË (2 a s «ÄGñ, ä «âo Œà ê Ò (calcined dolomite, CaO MgO)s»s ÀŒ. CaCO 3 MgCO 3 &CaO MgO+2CO 2 (1) C42 C4ƒ d/é ê Ò,àgÆ2 ò0(cylindrical)g泚 zdä Q SO 2 ½ÉÍ,à ½gõ L2,à LÎ(pore plugging) Ñ K SO 2, ei] AéÑ Âä æ ³ ôf SO 2 fmd(so 2 capture capacity)s IGQŒ[18]. Ca(OH) 2 Pz)(molar volume)2 CaO Pz)ÝŒ Jk ³, AéÑ ê Ò s dqÿ ½ÉË z)2 Í æê, «Rj dê ½ÉËs é Q A, í~éë«ñ É-Ñ Š èo(swelling) gæõ äj ê Œ[12]. ³äJk³ % ä o ôf,õ ÝQk³ SO 2,às 0K ôf z³ ei]«ýæê z 9,J«ÍGj æ ³ zdä «Ñ ³ j êœ[16]. K dq Ò o dqÿ( :o ÎÝŒ Pz)Í ³ zdä Q,à ei]«m ÇŒ[20]. ª ôf(calcium based sorbent) ä o dæqñ j s ç2 ak³ <s Àk[21], h Ò s «ÄK á õgñš Gä, d5, dqñ Ù ÆQs -Gñ ÊûWk³ MJ dæqs s Às ak³, KŒ. CaO MgO+2H 2 O&Ca(OH) 2 Mg(OH) 2 (2) Ca(OH) 2 Mg(OH) 2 &CaO MgO+2H 2 O (3) R (2)Q (3) dê_ê é ê_s ªJk³ äþg, Ý Œ à 9,Jê è³k ½ÉËs»s À2 ak³ ÝÊæÉ Œ[22] Z tg g» á õgñš2 SO 2 õ fmg,.k ôf³ ãò öñš ê Ò s ~G,³ ~GGñ ÄGŒ. Ò o c ~ «CaCO 3 Q MgCO 3 «Ê, ³äJk³ CaCO 3 Q MgCO 3 Í 1-2:1 9S³ «P Àk, Ž ~k³ Fe 2 O 3, SiO 2 Ù ~ s WGÊ À2), á Y Ñ Äê Ò o Fe 2 O 3 õ WGÊ À( :o U8s (nê ÀŒ. á õgñš2 «Q ço Ò s ÄGñ Œ{ê ço örñ g ôfõ fægœ. Ò s 0 ~., Íù³(furnace) ÑŠ 30 o C/min Í ù ³ 950 o C>( 95 Q á, 950 o CÑŠ 10~Ñ Ù5s K (GŠ Gñ %!ä (decarbonation)s }GŒ. %! ä s Mn Q0õ k³ Gä, d5 -Ê dö r( dq ð{² Äñz)s ÎÎ -GŠ Q0 1g Í 30 mlõ ÍGñ dqzœ. dõ Mn Œ{, QÆ, ÑŠ 110 o C 5 ³ 24QÑ Ÿ8 QÆQE, (surface water)õ ê ôfõ ³_,³ ~GGñ s{ê ço ÆQk³ é Qÿ2 ê_s }GŒ. Table 1Ñ2 á õg ôf fæñš }K dæqës fqgœ tg Ïh á õgñš fæk ôf U s ÊûG,.gŠ TGA (thermogravimetric analysis), XRD(X-ray diffraction), SEM(scanning electron microscope), EDX(energy dispersive X-ray spectroscopy)q BET ~ s }GŒ. dq ôfõ 20 ml/min K 0~.,GÑŠ TGA (Shimadzu TA-50 series)õ «ÄGñ 950 o C>( 30 o C/min Íù

3 @ê Ò s «ÄK SO 2 QR BM 479 Table 1. Hydration conditions Items Amount of sample Amount of deionized water Stirring rate Hydration temperature Hydration time Hydration method Evaporation temperature Evaporation time Conditions 10 g 300 ml 500, 1,000, 1,500 rpm 20, 60, 80, 100 o C 20, 40, 60, 80, 100, 120 min with ultrasonic wave, without ultrasonic wave 110 o C 24 hr ³ 95QÿŠ ñ ôb Êû/ k, zdä M á ôf ís e /,./ñ XRD(Rigaku RAD-C)~ s }GŒ. zdä s }G, M Ñ EDX(ISIS Oxford)õ «ÄGñ fæê ôf ò~ ê z dä M áñ ôf,=(morphology)õ e G,.Gñ SEM(Jeol-JSM-3 SCF)~ s }GÊ, fæk ôf CÆJ U s <4Ý,.Gñ ASAP 2000(Micrometrics, USA)ßjõ «ÄGñ ôf 9,Jê àz)(pore volume)õ +_GŒ / tà á õcñš fæk ôf zdä Y o Fig. 1Ñ fqk Y ßjõ «ÄGk, Y ßj2 j KÆQz, ä, Ú SO 2 ~,(URA-207)³ C~êŒ. Y öro ÏI 0.3 g f Æê ôf Q0õ ä,ñ, Q á, O 2 Q SO 2 K s ÆQGñ ä, Ñ K½Gk, O 2 Q SO 2 2 HYY(mixing chamber)ñš HYæÊ, 350 o C³ ùqe ä,ñ K½Wk³ K 5 dñ ñ s ÍJ k³ À GŒ. ä,2 ò Íù³ Ñ )k³ jæéê, Íù³ o C³ Ù5s K(QZŒ. ä, ÑŠ ôfñ ôê ä, d2 SO 2 ~,õ gš õj d õ, GŒ. O 2 Í zdä Ñ Âj2 s ÊûG,.gŠ O 2 K½Ñ dõ céê, ôf ÜÍÑ ñ ä ê ôf 9,JÑ ñ SO 2 fmd -Ê ôf ½É,Í z dä Ñ Âj2 s oýiœ. C J zdä Y Æ Qs Table 2Ñ fqgœ. 3. ûg Z +{ 3-1. JC Ïh û/ á õcñš ÄK Ò ò s k³ EDX ~ êõ Table 3ê Fig. 2Ñ fqg2) ~ êõ oý, CaCO 3 Q MgCO 3 9S«1:0.7_»s e O ÀÉŒ. Ò ò ê dê Ò s QÆQ ôfõ k³ TGAõ «ÄGñ 950 o C>( 95 QÿŠ 5 dñ ñ y dõ oýi k Fig. 3Ñ ~ êõ ÉŒ. Ò ò o 510 o C_ ÑŠ y ÝÍ QÊæ 930 o C>( 47.5%_ y ÝÍ ³ 2) «2 CaCO 3 Q MgCO 3 ³z CO 2 Í ö æš CaO Q MgO³ Mhæ, )é G(O dê Ò s QÆQ ôf Î2 400 o C>( ŠŠ¾ y ÝÍ ³ ŒÍ 510 o C>( 15.6%_ 1ó y ÝÍ ³ Ê 870 o C> ( 18.7%_ 2ó y ÝÍ ³ 2) 1ó y Ý2 Fig. 1. Schematic diagram of experimental apparatus. 1. Niddle valve 7. Soap flowmeter 2. Mass flow controller 8. Reactor 3. Flowmeter 9. Tube furnace 4. Miximg chamber 10. Gas analyser 5. Temperature indicator 11. Recoder 6. Threeway valve Table 2. Sulfation conditions Items Conditions Reaction temperature 850 o C Concentration of SO 2 1,000 ppm Total flow rate 100 ml/min, 150 ml/min Used sorbent raw dolomite, CaO, CaCO 3 Particle size 0-32 µm, µm, µm, µm, µm Sorbent amount 0.3 g, 3 g Ca(OH) 2 ³z í~é ö Ñ K Ý«, 2ó y Ý2 Mg(OH) 2 ³z í~é ö Ñ K Ý ak³ 0êŒ. á õcñš fæk ôf s e G,.gŠ Ò ò ê CaO Q0 -Ê Ms- ê_s Mn ôf XRD ~ êõ Fig. 4Ñ ÉŒ. Ò ò Î o, 41.5 o - Ê 50.9 o 2θ ÎÑŠ CaCO 3 U ) (peak)í Ê MgCO 3 U ) ÝñcÊ ÀŒ. Ò ò s 80 o CÑŠ 1,500 rpm /ä ³ 120~ Ÿ8 ð{²õ «ÄGñ Ms-K ôf ) õ Ý CaO ) Q M ³jWs e O À Œ. G(O MgO ) 2,(intensity)Í Ês O 4n,Ž (base-line) noiseí [Gñ C~«, )éñ,qõ G( : IŒ. Ò ò s k³ dqÿ2 ê_ñš ð{² «Ä ñ zí ôf U Ñ Âj2 s ÊûG,.gŠ }K SEM ~ êõ Fig. 5Ñ fqgœ. Ò ò o,à«è G( :o CÆõ Í(, Ò s Q Œ{ ð{²õ «ÄG( : Ê dqe fæk ôf2 Êo,à«æ Àk, Êo Table 3. EDX results of raw dolomite Elements O Mg Si Ca Compositions Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

4 480 6ž>öÆÄCö«CU Fig. 2. EDX pattern of raw dolomite. Fig. 4. XRD powder patterns of sorbents: (a) raw dolomite, (b) CaO, and (c) hydrated/calcined dolomite. Fig. 3. Thermogravimetric analysis of (a) raw and (b) hydrated dolomite. C42 C4ƒ ½ÉË«Ñ ~æ À{s < ÀŒ. :) ð{²õ «Ä/ ñ BÆK ôf2 ð{²õ «ÄG( :o ÎÝŒ ÊÊ Â K æéê, ÝŒ GÊ Lj Õ, DàgÆõ äê À{s e O ÀŒ. dq ôf2, ½ÉË«Ñ ~æ ÀÊ, dq Œ{ QÆG2 ê_ñš í~é ö _Ñ g ½ÉÍ Ï Ñj zš( ³ ½É DÍ Ê4(Š 9,J«Íæ, ð{²õ «ÄGñ ôfõ fæg ð{ ²Ñ g ôf ½ÉË«Ï Ñj zš( ³ Dà gæí Ï g(š ½ÉË«Ï Ñ ~æ2 ak³ 0êŒ. ôf fæq d ÆQÑ ñ ôf U s oýd.g Š d ÆQs -G fæk ôfës k³ U 0 ôrs «ÄGñ 9,Js +_GŒ. Ò ò s 30 o C/min Íù ³ 870 o Cb( 95GŠ Q Œ{, 870 o CÑŠ Œ Q 10~Ñ Ù5k³ QÿÊ, Table 1Ñ fqk d ÆQÑ dq áñ ŒQ s{ ÆQk³ é QE ~ s }GŒ. Table 4Ñ ~ êõ fqgê, d ÆQÑ ñ 9,J dõ Fig. 6Ñ QGŒ. Fig. 6(a)ÑŠ d5 õ 100 o C³ Ê_GÊ Gä õ ÍQÿ ôf 9,Jo ÍGÊ, Fig. 6(b) ð{²õ «ÄG( :Ê Gä õ 1,500 rpm

5 @ê Ò s «ÄK SO 2 QR BM 481 Table 4. Structural properties of sorbents used in this study Specific surface area, [m 2 /g] Total pore volume, [ml/g] Raw dolomite Hydrated without ultrasonic wave at 100 o C for 120 min Hydrated with ultrasonic wave at 80 o C for 120 min dqe fæk ôf M 9,J 41.8 m 2 /gýœ u 25% _ Íê às Ýñ?Ê ÀŒ. «Q ço ê2 OÑŠ K Fig. 5 SEM ~ êq ³jG2) ð{²õ «ÄGñ d Q Î, ð{²ñ g ôf ½ÉË«Ï Ñj zš( ³ Dà gæí Ï g(š ½ÉË«Ï Ñ ~æ ³ 9,J«Íæ2 ak³ 0êŒ Ÿ?œ á õgñš fæk ôf U ~ êõ ³ Table 2Ñ fqk zdä ÆQ GÑŠ ôf %zds Êûg ÝIŒ.? Y ³2 O 2 K, ôf ÜÍ, ôf ½É D -Ê ôf 9,Js Ž_Gk, Œ{ê ço êës» ÉŒ O 2 O 2 Êé G Ò zdä o Œ{ê ço ä Dgõ í2 ak³ <s ÀŒ[12, 14]. Fig. 5. SEM images of various sorbents. k³ Ê_Q Î2 d5 Í s 9GJ à 9,Js äj ös < Àk, J_ dqño u 100~ _ ak³ 0êŒ. K, Fig. 6(c) ð{²õ «ÄGñ 1,500 rpm Gä ³ 80 o CÑŠ 120~ Ÿ8 dqzs ), ôf 9,J«50.7 m 2 /g_ ³Š 100 o CÑŠ 120~ Ÿ8 ð{²õ «ÄG( :Ê CaCO 3 MgCO 3 &CaO MgO+2CO 2 (4) 1 CaO MgO+SO O 2 &CaSO 4 +MgO (5) 2 1 MgO+SO O 2 &MgSO 4 (6) 2 Bak[14]o K CaOQ MgO Q0õ ÄK SO 2 Q zdä Y ÑŠ MgO Î2 èä ó Ñ Âj2 O 2 «(O CaO Î2 O 2 «zdä èä ó Ñ Ã s?( :2 ak³ è,gœ. K, àd ~.DÑŠ 2 R (5)Q ço ä Ñ g CaSO 4 G, 775 o C «G 5 ÑŠ2 R (6) ä Ñ g MgO³z MgSO 4 æ(o 850 o C Ê5ÑŠ2 MgSO 4 Í ùjk³ 8_GD )éñ ~g Í ³ Š SO 2 fmñ DñG( \GÊ (, ê_ñš ôf Dà Ñ s?ê CaO ½É,Ñ SO 2 õ Ê_Q ÿ2 òos KŒ2 õg êë[12, 23]«è,ê àí ÀŒ. Š, á õgñš2 O 2 Í zdä Ñ Âj2 s ÊûGD.gŠ Ms- Q Ò s k³ ä D³ K½æ2 D Æ s dqÿš zdä s }Gk, zdä 5 2 MgSO 4 ùj 8_ Ñ D Gñ MgO s åqo À s ak³ æ2 850 o Cõ Ž_GŒ. O 2 Os ÊûGD.gŠ O 2 d2 ŒP( :Ê ( 100 ml/min SO 2 Ñ 50 ml/min O 2 õ HYK D Æ ê O 2 õ àg( :Ê 100 ml/min SO 2 Os K½Q ÎOs Y Gk, êõ Fig. 7Ñ fqgœ. O 2 õ HYK D Æ ³ Î2 ä QÑ«88~ _ ê s ) SO 2 MI 317 ppmñ Gk, 130 ~«êo )b( MI õ K(GŒÍ Í ¾ ÍG Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

6 482 6ž>öÆÄCö«CU Fig. 7. Effect of O 2 gas on sulfation (sorbent: 0.3 g, SO 2 : 100 ml/min, sulfation temp.: 850 o C). Fig. 8. Sulfation for three types of sorbents (sorbent: 3 g, 100 ml/min SO 2 +50ml/min O 2, sulfation temp.: 850 o C). Fig. 6. Effect of hydration conditions on specific surface area. ñ 160~ «áz 2 zdä ««,}æ( :{s e O ÀÉŒ. O 2 õ àg( :Ê 100 ml/min SO 2 Os K½Q Î2 SO 2 Í ŠŠ¾ ÝGŒÍ 714 ppm _ MI Ñ Gk, ä QÑ«247~ _ êo )z Í C42 C4ƒ ¾ ÍGñ 287~ «áz 2 zdä ««³ ( : 2 as < ÀÉŒ. ä Ü QÑs ÊsK SO 2 ô s 9Gg Ý O 2 Êé ñzí èä ó Ñ2 s Âj( :2 ak³ Ý«(O ð,ä Ñ2 s?2 ak³ e æéœ. «Q ço êõ g O 2 Êé GÑŠ2 ä ð,ñ MgO Í SO 2 Q ä Ñ ñgñ MgSO 4 õ G(O QÑ«êG Š ùjk³ 8_G, )éñ ~gí ³ Š %zñ,ñõ G( \Gj ök³ 2 ê «Ñ gš2 ÍJ Y s Gñ ½gtO O ak³ 0êŒ ôf ÜÍÑ ñ zdä Ms- ê_s Mn Ò ê CaCO 3 Q CaO Qus ôf³ ÄGñ, ÎÎ zdä U s oýiœ. ôf Šo 3gs ígê ä, Æ o SO ml/minq O 2 50 ml/minõ HYGñ ä o C Ÿ³ ÆQ GÑŠ zdä s }G k, ÎÎ ôfëñ K zdä Y êõ Fig. 8Ñ f QGŒ. êõ oý, Ò o MI Í 223 ppm_ ³ Š MI Ñ G2) U1 QÑo 47~«ÉÊ, CaCO 3 2 MI 98 ppm_ >( G2) U1 QÑo 71~«Ék, CaO 2 57 ppm_ MI >( G2) 168~«æÉŒ.

7 @ê Ò s «ÄK SO 2 QR fm 483 Fig. 9. Effect of sorbent particle size on sulfation. Fig. 10. SEM morphology of sorbent below 32 µm. Ò ê CaCO 3 2 CaOÝŒ ä «Kíj,}æ MI Ñ G2) U-2 QÑ«EI(O MI õ K(G2 QÑ«ÎÎ 10~ê 16~ _ ) ägñ CaO Î2 4QÑ «K( ös e O ÀÉŒ. Fig. 11. Effect of specific surface area on sulfation ôf ½É, ôf ½É,Í zdä Ñ Âj2 s ÊûG,.gŠ ôf ½É,õ 32 µm «G, µm, µm, µm, µm,³ fægñ, ÎÎ Q0 0.3 gñ 100 ml/min SO 2 Q 50 ml/min O 2 õ HYK ä, Q 850 o CÑŠ zdä s }Gk, êõ Fig. 9Ñ QGŒ.,³z < À «ôf ½É,Í Ês SO 2 ô«ñ ³ (O 32 µm «G ôf2 ä «â( :o ak³ Œ. «K2 32 µm «G ½É,õ ä2 Î, ½É,Í wå Ê, )éñ 850 o C Ê5ÑŠ2 Ñ g,à LÎ Ú 4k³ g ä Ys º SO 2 Q ä «Ñ ³ ( :2 ak ³ ÝÊê àí Àk[12], Fig. 10 SEM,s gš zdä áñ2 ôf,ñ 4«³ û as e O ÀÉŒ ,J ôf 9,J«zdä Ñ Âj2 s ÊûG,.gŠ ôf Q0Ë ÍÒ) 9,J«30.3, Ê 50.7 m 2 /g ô fõ «ÄGñ zdä s }Gk, Y êõ Fig. 11Ñ f QGŒ. ôf 9,J«30.3 m 2 /g, 42.8 m 2 /g, 50.7 m 2 /g ô f MI 2 ÎÎ 318 ppm, 169 ppm, 37 ppm«éê, MI Ñ G2 QÑ«ÎÎ 97~, 94~, 155~ _ k, 9,J«50.7 m 2 /g Î ôd«225~ Ÿ8 (æéœ. SO 2 ô s ªg á ê, ÎÎ g adsorbed SO 2 /g adsorbate, g adsorbed SO 2 /g adsorbate, g adsorbed SO 2 /g adsorbate às»s ÀÉ2) «³z ôf 9,J«ÍWk³ SO 2 ô Ú zdä õ ÍQs e O ÀÉŒ. 4. û «á õgñš2 h Ò s «ÄK SO 2 ôfõ íèo I Jk³ fæk ôf U ~ ê zdä s K ôf % zds ÊûGk, Œ{ê ço Ës»s ÀÉŒ. (1) Ò ò s dqÿ2 ê_ñš 100 o CÑŠ ~ Ÿ 8 1,500 rpm Gä ³ s-gs ) Íß Ã 9,Js» Ék, dq ), ð{²õ «ÄO )Ñ2 R( :o ÎÝ Korean Chem. Eng. Res., Vol. 42, No. 4, August, 2004

8 484 6ž>öÆÄCö«gU Œ 25% «9,J«ÍGÊ, SO 2 ôo Ò ò u 16 _ Í æ2 ak³ Œ. (2) zdä ÑŠ ê O 2 2 ð,ä Ñ s? K ä «³ (O SO 2 ôñ2 s Âj( :IŒ. (3) ôf ½É,Í Ês SO 2 ôd«âo ak³ (O 32 µm«g, ôf2 850 o C Ê5ÑŠ ùñ K Ñ g SO 2 ôd«ýg2 ak³ Œ. (4) ôf 9,J Í2 SO 2 ô Ú zdä õ ÍQs e O ÀÉŒ. S+S 1. Ma, J., Fang, M. and Lau, N. T., Activation of La 2 O 3 for the Catalytic Reduction of SO 2 by CO, J. Catal., 163(2), (1996). 2. Hibbert, D. B. and Campbell, R. H., Flue Gas Desulphurisation: Catalytic Removal of Sulphur Dioxide by Carbon Monoxide on Sulphided La 1-x Sr x CoO 3 : I. Adsorption of Sulphur Dioxide, Carbon Monoxide and Their Mixtures, Appl. Catal., 41(1), (1988). 3. Hibbert, D. B. and Campbell, R. H., Flue Gas Desulphurisation: Catalytic Removal of Sulphur Dioxide by Carbon Monoxide on Sulphided La 1-x Sr x CoO 3 : II. Reaction of Sulphur Dioxide and Carbon Monoxide in a Flow System, Appl. Catal., 41(1), (1988). 4. Yoo, K. S., Chu, K. J. and Kim, K. T., SO 2 Absorption Characteristics of Limestone Slurry in a Jet Bubbling Reactor, J. of Korean Society of Environmental Engineers, 20(9), (1998). 5. Yoo, K. S., Jeong, S. M. and Kim, S. D., The Removal of SO 2 and NO by Activated Carbon Fibers, HWAHAK KONGHAK, 37(2), (1999). 6. Park, B. B. and Rhee, B. S., The Removal of SO 2 and NO by Activated Carbon Fibers, HWAHAK KONGHAK, 37(2), (1999). 7. Kim, H., Park, D. W., Woo, H. C. and Chung, J. S., Reduction of SO 2 by CO to Elemental Sulfur over Co 3 O 4 -TiO 2 Catalysts, Appl. Catal. B, 19(3), (1998). 8. Lee, W. S., Lee, H. K., Jo, H. D., Kim, S. G. and Kim, I. W., A Study on Dissolution Rates of Domestic Limestones in Wet FGD Processes, HWAHAK KONGHAK, 34(6), (1996). 9. Muzio, L. J. and Offen, G. R., Dry Sorbent Emission Control Technologies: Part I. Fundamental Processes, JAPCA, 37(5), (1987). 10. Park, C. Y., Chung, S. H. and Cho, C. H., Dry Flue Gas Desulfurization in a Fixed Bed Reactor using Dolomite, HWAHAK KONGHAK, 22(6), (1984). 11. Kim, H. and Park, D. K., Reactivity of Calcined Limestone and Dolomite with Sulfur Dioxide, Korean J. Chem. Eng., 4(2), (1987). 12. Al-Shawabkeh, A., Matsuda, H. and Hasatani, M., Enhanced SO 2 Abatement with Water-Hydrated Dolomitic Particles, AIChE J., 43(1), (1997). 13. Withum, J. A. and Yoon, H., Treatment of Hydrated Lime with Methanol for In-Duct Desulfurization Sorbent Improvement, Environ. Sci. Technol., 23(7), (1989). 14. Bak, Y. C., Sulfation Reaction Kinetics of Pulverized Korean Dolomite and Limestone using Thermogravimetric Analyses, Energy Engg. J, 7(2), (1998). 15. Borgwardt, R. H., Calcium Oxide Sintering in Atmospheres Containing Water and Carbon Dioxide, Ind. Eng. Chem. Res., 28(4), (1989). 16. Newton, G. H., Harrison, D. J., Silcox, G. D. and Pershing, D. W., Control of SO x Emissions by in-furnace Sorbent Injection: Carbonates vs. Hydrates, Environmental Progress, 5(2), (1986). 17. Christman, P. G. and Edgar, T. F., Distributed Pore-Size Model for Sulfation of Limestone, AIChE J., 29(3), (1983). 18. Irabien, A., Cortabitarte, F., Viguri, J. and Ortiz, M. I., Kinetic Model for Desulfurization at Low Temperatures using Calcium Hydroxide, Chem. Eng. Sci., 45(12), (1990). 19. Cho, Y. H, Oh, S. C., Lee, H. P., Kim, H. T. and Yoo, K. O., Dry Removal of SO 2 in Flue Gas by Hydrated Calcium-Based Sorbent, J. of Korean Society of Environmental Engineers, 21(11), (1999). 20. Hartman, M. and Coughlin, R. W., Oxidation of SO 2 in a Tricklebed Reactor Packed with Carbon, Chem. Eng. Sci., 27(5), (1972). 21. Kirchgessner, D. A., Gullet, B. K. and Lorrain, J. M., Activation and Reactivity of Novel Calcium-Based Sorbents for dry SO 2 Control in Boilers, Powder Technology, 58(3), (1989). 22. Howard, J. R., Fluidized Beds: Combustion and Applications, 1st ed., Applied Science Publishers, Barking, Essex, England, 221(1983). 23. Dennis, J. S. and Hayhurst, A. N., The Effect of CO 2 on the Kinetics and Extent of Calcination of Limestone and Dolomite Particles in Fluidised Beds, Chem. Eng. Sci., 42(10), (1987). C42 C4ƒ